黄河流域城市群生态安全能级:区域差异、动态演化及提升路径
柴国荣(1976—),男,博士,教授,博士生导师,研究方向为生态安全与高质量发展。E-mail:chaigr@lzu.edu.cn |
收稿日期: 2024-03-25
修回日期: 2024-07-24
网络出版日期: 2025-05-12
基金资助
甘肃省哲学社会科学规划重点项目(2023ZD004)
Ecological Security Level of Urban Agglomerations in the Yellow River Basin: Regional Difference, Dynamic Evolution and Improvement Path
Received date: 2024-03-25
Revised date: 2024-07-24
Online published: 2025-05-12
柴国荣 , 李佳音 , 付文昊 . 黄河流域城市群生态安全能级:区域差异、动态演化及提升路径[J]. 经济地理, 2025 , 45(2) : 69 -79 . DOI: 10.15957/j.cnki.jjdl.2025.02.007
On the basis of deepening the theoretical cognition of WSR methodology and following the research context of "theoretical index construction, ecological security level measurement, spatiotemporal feature characterization, and promotion path analysis, this paper reveals the regional differences, dynamic evolution and upgrading path of the ecological security level of the seven major urban agglomerations in the Yellow River basin from 2010 to 2020 using the combination weighting method of game theory, Dagum Gini coefficient, kernel density estimation and fuzzy set qualitative comparative analysis. The results show that: 1) The overall ecological security level exhibits a fluctuating upward trend in the Yellow River basin, and there is an obvious gradient effect. 2) In terms of regional differences, there exists significant spatial difference in the ecological security level of urban agglomerations in the Yellow River basin, the differences between urban agglomerations are the main source of the differences in ecological security level, and the contribution of supervariable density is the secondary source. 3) In terms of spatio-temporal dynamic evolution, the whole ecological security level of the basin has a significant spatial correlation, and the ecological security level of the urban agglomerations has a polarization phenomenon. 4) In terms of configuration mechanism, high-level ecological security is the result of multi-factor interaction within the system, and no single factor can constitute the necessary conditions for high-level ecological security. There are five types of upgrading paths of high-level ecological security energy in urban agglomerations of the Yellow River basin: interconnection type between Wuli and Renli under the background of Wuli, two-wheel driving type of Wuli and Renli, two-wheel driving type of Renli and Wuli under the background of Shili, interconnection type between Shili and Wuli, interconnection type among Wuli, Shili and Renli, Various urban agglomerations should make flexible and differentiated choices from the perspective of complex system with multi-element linkage. Finally, it puts forward three suggestions: building the coordinated radiation circle of ecological security level in urban agglomerations of the Yellow River basin, injecting the "power source" of interconnection among urban agglomerations, and smoothing the "aorta" of ecological resource intensification and greening of urban agglomerations in the Yellow River basin.
表1 区域生态安全能级的评价指标体系Tab.1 Evaluation index system of regional ecological security energy level |
一级指标 | 二级指标 | 三级指标(单位) | 属性 | 熵值法 | Critic赋权法 | 综合权重 | 参考文献 |
---|---|---|---|---|---|---|---|
物理 | 环境压力 | 单位面积工业废水排放量(万t/km2) | - | 0.0101 | 0.0345 | 0.0117 | [3] |
单位面积工业SO2排放量(t/km2) | - | 0.0110 | 0.0361 | 0.0126 | [3] | ||
单位面积工业烟粉尘排放量(t/km2) | - | 0.0088 | 0.0333 | 0.0104 | [2] | ||
单位面积CO2排放量(百万t/km2) | - | 0.0086 | 0.0304 | 0.0100 | [31] | ||
PM2.5年均值浓度(μg/m3) | - | 0.0583 | 0.0589 | 0.0583 | [3,5,32] | ||
生态禀赋 | 空气质量大于二级天数(天) | + | 0.0382 | 0.0579 | 0.0395 | [2,28] | |
气候变暖风险(标准化气温)(-) | - | 0.0426 | 0.0476 | 0.0429 | [33] | ||
建成区绿化覆盖率/% | + | 0.0195 | 0.0318 | 0.0203 | [28,32] | ||
人均水资源量(m3/人) | + | 0.1174 | 0.0389 | 0.1123 | [2] | ||
事理 | 生态治理 | 污水集中处理率(%) | + | 0.0120 | 0.0338 | 0.0135 | [2] |
生活垃圾无害化处理率(%) | + | 0.0138 | 0.0396 | 0.0155 | [5] | ||
一般工业固体废物综合利用率(%) | + | 0.0223 | 0.0527 | 0.0243 | [1,28] | ||
政府支持 | 水利、环境和公共设施管理业从业人口占比(%) | + | 0.1002 | 0.0382 | 0.0961 | [30] | |
环保词频占比(%) | + | 0.0468 | 0.0406 | 0.0464 | [34] | ||
人均节能环保支出(千万元/人) | + | 0.1077 | 0.0426 | 0.1034 | [30] | ||
人理 | 经济民生 | 人均GDP(万元/人) | + | 0.0781 | 0.0326 | 0.0752 | [3] |
非农业产值占比(%) | + | 0.0282 | 0.0441 | 0.0292 | [1] | ||
城乡收入比(%)* | - | 0.0348 | 0.0610 | 0.0365 | [1] | ||
城镇失业登记率(%) | - | 0.0485 | 0.0524 | 0.0488 | [2] | ||
绿色生活 | 人口密度(人/km2) | - | 0.0190 | 0.0427 | 0.0206 | [1,3] | |
人均日生活用水量(l/人) | - | 0.0280 | 0.0404 | 0.0288 | [2] | ||
用水普及率(%) | + | 0.0108 | 0.0356 | 0.0124 | [35] | ||
人均公园绿地面积(m2/人) | + | 0.0656 | 0.0369 | 0.0638 | [2,3] | ||
人均城市道路面积(m2/人) | + | 0.0698 | 0.0373 | 0.0677 | [3,5] |
注:“*”表示城乡收入比=城镇人口人均可支配收入/乡村人口人均可支配收入。 |
表2 2010—2020年黄河流域城市群生态安全能级全局莫兰指数Tab.2 Global Moran index of ecological security energy level in urban agglomerations of the Yellow River basin from 2010 to 2020 |
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|
Moran's I | 0.598*** | 0.599*** | 0.581*** | 0.623*** | 0.470*** | 0.375*** | 0.557*** | 0.383*** | 0.549*** | 0.525*** | 0.435*** |
Z | 6.220 | 6.190 | 6.201 | 6.503 | 4.954 | 4.004 | 5.982 | 4.047 | 5.764 | 5.466 | 4.517 |
注:***表示在1%的水平上显著。 |
表3 2010—2020年黄河流域城市群生态安全能级差异及分解Tab.3 Difference and decomposition of ecological security level in urban agglomerations of the Yellow River basin from 2010 to 2020 |
年份 | 总体基 尼系数 | 贡献 | 贡献率(%) | |||||
---|---|---|---|---|---|---|---|---|
区域内 | 区域间 | 超变密度 | 区域内 | 区域间 | 超变密度 | |||
2010 | 0.096 | 0.014 | 0.065 | 0.017 | 14.200 | 67.830 | 17.970 | |
2011 | 0.088 | 0.012 | 0.063 | 0.014 | 13.210 | 70.970 | 15.830 | |
2012 | 0.108 | 0.014 | 0.079 | 0.016 | 12.610 | 72.830 | 14.560 | |
2013 | 0.104 | 0.012 | 0.081 | 0.011 | 11.570 | 78.210 | 10.230 | |
2014 | 0.099 | 0.014 | 0.062 | 0.024 | 13.890 | 62.080 | 24.030 | |
2015 | 0.088 | 0.014 | 0.049 | 0.025 | 15.550 | 56.080 | 28.380 | |
2016 | 0.105 | 0.014 | 0.073 | 0.019 | 13.250 | 68.740 | 18.020 | |
2017 | 0.096 | 0.015 | 0.053 | 0.028 | 15.690 | 55.440 | 28.870 | |
2018 | 0.113 | 0.017 | 0.073 | 0.024 | 14.710 | 64.430 | 20.860 | |
2019 | 0.102 | 0.014 | 0.066 | 0.022 | 14.050 | 64.240 | 21.710 | |
2020 | 0.094 | 0.014 | 0.058 | 0.022 | 14.480 | 62.080 | 23.440 | |
均值 | 0.099 | 0.014 | 0.066 | 0.020 | 13.930 | 65.720 | 20.350 |
表4 高生态安全能级组态路径Tab.4 Configuration paths of high-level ecological security |
维度 | 变量 | 2010 | 2013 | 2017 | 2020 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H1a | H1b | H2a | H3a | H3b | H2b | H4 | H1c | H5a | H5b | H5c | |||||
物理 | 环境压力(CS) | ● | ● | ● | ● | ● | ● | ● | ⊗ | ||||||
生态禀赋(ER) | ● | ● | ● | ● | ● | ● | ● | ||||||||
事理 | 生态治理(EG) | ● | ⊗ | ● | ⊗ | ● | |||||||||
政府支持(GS) | ● | ● | ● | ● | ● | ● | ● | ● | |||||||
人理 | 经济民生(EP) | ● | ● | ● | ● | ● | ● | ● | ● | ||||||
绿色生活(GL) | ● | ● | ● | ● | ⊗ | ● | ● | ● | |||||||
原始覆盖度 | 0.453 | 0.383 | 0.506 | 0.418 | 0.470 | 0.418 | 0.364 | 0.449 | 0.435 | 0.455 | 0.346 | ||||
唯一覆盖度 | 0.035 | 0.049 | 0.137 | 0.030 | 0.082 | 0.031 | 0.076 | 0.058 | 0.064 | 0.139 | 0.099 | ||||
一致性 | 0.980 | 0.976 | 0.990 | 0.991 | 0.993 | 0.998 | 0.899 | 0.963 | 0.956 | 0.963 | 0.964 | ||||
总体一致性 | 0.971 | 0.990 | 0.919 | 0.964 | |||||||||||
总体覆盖度 | 0.639 | 0.531 | 0.615 | 0.635 |
注:⊗指边缘条件缺失、⊗表示核心条件缺失、●表示辅助条件存在、●表示核心条件存在。 |
[1] |
马海涛, 徐楦钫. 黄河流域城市群高质量发展评估与空间格局分异[J]. 经济地理, 2020, 40(4):11-18.
|
[2] |
张国兴, 张婧钰, 周桂芳. 黄河流域资源型城市生态安全等级边界及演化趋势[J]. 资源科学, 2023, 45(4):762-775.
|
[3] |
郝智娟, 文琦, 施琳娜, 等. 黄河流域城市群社会经济与生态环境耦合协调空间网络分析[J]. 经济地理, 2023, 43(12):181-191.
|
[4] |
刘琳轲, 梁流涛, 高攀, 等. 黄河流域生态保护与高质量发展的耦合关系及交互响应[J]. 自然资源学报, 2021, 36(1):176-195.
|
[5] |
孙久文, 崔雅琪, 张皓. 黄河流域城市群生态保护与经济发展耦合的时空格局与机制分析[J]. 自然资源学报, 2022, 37(7):1673-1690.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
李细归, 吴清, 周勇. 中国省域旅游生态安全时空格局与空间效应[J]. 经济地理, 2017, 37(3):210-217.
|
[10] |
赵文力, 刘湘辉, 鲍丙飞, 等. 长株潭城市群县域生态安全评估研究[J]. 经济地理, 2019, 39(8):200-206.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
丁耀华. 管理场概论[J]. 世界标准化与质量管理, 1994 (6):13-17.
|
[15] |
|
[16] |
|
[17] |
孙志刚. 城市功能论[M]. 北京: 经济管理出版社,1998.
|
[18] |
韩玉刚, 焦化富, 李俊峰. 基于城市能级提升的安徽江淮城市群空间结构优化研究[J]. 经济地理, 2010, 30(7):1101-1106.
|
[19] |
杨力, 刘敦虎, 魏奇锋. 共生理论下区域创新生态系统能级提升研究[J]. 科学学研究, 2023, 41(10):1897-1909.
|
[20] |
李哲睿, 甄峰, 徐锋. 城市能级和城市网络结合视角下的南京城市首位度评估与提升研究[J]. 现代城市研究, 2023 (6):100-107.
|
[21] |
王成福. 成渝地区双城经济圈交通能级与经济能级测度及耦合关系研究[D]. 重庆: 重庆交通大学, 2023.
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
王静, 袁昕怡, 陈晔, 等. 面向可持续城市生态系统管理的资源环境承载力评价方法与实践应用——以烟台市为例[J]. 自然资源学报, 2020, 35(10):2371-2384.
|
[27] |
刘小琼, 何鹏飞, 韩继财, 等. 长江经济带生态安全格局演化及多情景模拟预测[J]. 经济地理, 2023, 43(12):192-203.
|
[28] |
穆学青, 郭向阳, 明庆忠, 等. 黄河流域旅游生态安全的动态演变特征及驱动因素[J]. 地理学报, 2022, 77(3):714-735.
|
[29] |
顾基发, 高飞. 从管理科学角度谈物理—事理—人理系统方法论[J]. 系统工程理论与实践, 1998, 18(8):1-5.
|
[30] |
|
[31] |
|
[32] |
葛世帅, 曾刚, 杨阳, 等. 黄河经济带生态文明建设与城市化耦合关系及空间特征研究[J]. 自然资源学报, 2021, 36(1):87-102.
|
[33] |
丁宇刚, 孙祁祥. 气候风险对中国农业经济发展的影响——异质性及机制分析[J]. 金融研究, 2022(9):111-131.
|
[34] |
陈诗一, 陈登科. 雾霾污染、政府治理与经济高质量发展[J]. 经济研究, 2018, 53(2):20-34.
|
[35] |
单菁菁, 宋德骞, 董亚宁, 等. 面向人与自然和谐共生的城市群高质量发展研究[J]. 城市与环境研究, 2023(3):58-81.
|
[36] |
方创琳. 黄河流域城市群形成发育的空间组织格局与高质量发展[J]. 经济地理, 2020, 40(6):1-8.
|
[37] |
王新越, 郭利贞. 中国省域入境旅游经济韧性时空特征与组态机制[J]. 经济地理, 2023, 43(5):219-228.
|
[38] |
王耕, 李素娟, 马奇飞. 中国生态文明建设效率空间均衡性及格局演变特征[J]. 地理学报, 2018, 73(11):2198-2209.
|
[39] |
王金南. 科学把握生态文明建设的新形势[J]. 求是, 2018(13):47-48.
|
/
〈 |
|
〉 |