房价、房价收入比对中国城镇化的影响与空间效应实证分析
陈瑶(1992—),女,四川绵阳人,博士研究生,研究方向为新型城镇化与区域经济学。E-mail:417067432@qq.com |
收稿日期: 2020-09-21
网络出版日期: 2025-04-25
基金资助
国家社会科学基金项目(20BJL078)
Impact of House Price and House Price-to-Income Ratio on Urbanization of China:Empirical Analysis Based on Spatial Econometric Model
Received date: 2020-09-21
Online published: 2025-04-25
利用2005—2019年我国31省面板数据,基于三种权重矩阵构建空间滞后模型和空间误差模型,分析房价、房价收入比对城镇化的影响。结果表明:①房价、房价收入比与三种城镇化的空间自相关和空间依赖性显著,并存在空间溢出效应和“马太效应”。②房价对人口城镇化、经济城镇化与土地城镇化的正向影响作用显著,房价对人口城镇化的影响呈现倒“U”型,但房价对经济城镇化和土地城镇化的影响是线性的。③房价收入比对人口城镇化的影响为正,房价收入比对经济城镇化与土地城镇化的影响呈倒“U”型。④从区域看,东部和中部房价上涨对人口城镇化的影响为正,西部为负;中部房价收入比对人口城镇化的影响不显著,西部为正,东部为负;中西部人口城镇化溢出效应最大。
陈瑶 , 陈湘满 . 房价、房价收入比对中国城镇化的影响与空间效应实证分析[J]. 经济地理, 2021 , 41(4) : 57 -65 . DOI: 10.15957/j.cnki.jjdl.2021.04.008
Using panel data from China's 31 provinces from 2005 to 2019, this study introduces an analytical modeling method based on three weight matrices, with the construction of a spatial lag model and a spatial error model to analyze the impact of housing prices and housing price-to-income ratios on urbanization. The conclusions are as follows:1)The spatial autocorrelation and spatial dependence of housing prices, housing price-to-income ratios and the three types of urbanization are significant, and there are spatial spillover effects and "Matthew effect".House prices have a significant positive effect on population urbanization, economic urbanization and land urbanization. 2)The effect of house prices on population urbanization presents an inverted "U" shape, while the effect of house prices on economic urbanization and land urbanization presents linear characteristic. 3)The housing price-to-income ratio has a positive impact on population urbanization, and the housing price-to-income ratio has an inverted U-shaped impact on economic urbanization and land urbanization.4)From a regional perspective, the increase in housing prices in the eastern and central regions has a positive impact on population urbanization, while it has a negative impact on the western region; the central region’s housing price-to-income ratio has no significant impact on population urbanization, yet it has a has a positive effect in the west and negative in the east; The urbanization of the central and western regions has the largest spillover effect.
Key words: housing price; housing price-to-income ratio; urbanization; spatial effect
表1 变量设定与解释Tab.1 Variable setting and explanation |
变量名称 | 符号 | 指标含义 |
---|---|---|
人口城镇化 | urb_p | 城镇人口/该地区人口总数(%) |
土地城镇化 | urb_I | 城市建成区面积/总面积(%) |
经济城镇化 | urb_e | 第三产业增加值/第二产业增加值(%) |
房价水平 | lnHP | 商品房销售总价/商品房销售面积(元) |
房价收入比 | PI | 房价水平/城镇就业人员平均工资(%) |
城乡收入差距 | income | 城镇居民可支配收入/农村居民纯收入(%) |
市场化程度 | mark | (GDP-财政收入)/GDP(%) |
医疗保障水平 | medical | 每万人医疗床位数(张) |
城市设施水平 | basic | 每万人拥有公交车辆(标台) |
高级人力资本 | lnedu | 高等学校平均在校生数(人) |
城市社会保障 | insurance | 养老保险参与率(%) |
非国有部门就业率 | employ | 非国有单位就业人数/城镇单位总就业人数 |
经济发展水平 | lneco | 人均GDP(元) |
失业率 | une | 城镇失业人数/城镇总人口数(%) |
表2 各变量的描述性统计Tab.2 Descriptive statistics of each variable |
变量名称 | 观测数 | 均值 | 标注差 | 最小值 | 最大值 |
---|---|---|---|---|---|
urb_e | 465 | 2.332 | 0.131 | 2.072 | 2.832 |
urb_I | 465 | 10.220 | 4.653 | 1.132 | 30.740 |
urb_p | 465 | 53.151 | 14.560 | 20.850 | 89.600 |
lnHP | 465 | 8.501 | 0.587 | 7.332 | 10.489 |
PI | 465 | 0.123 | 0.041 | 0.042 | 0.284 |
income | 465 | 2.828 | 0.556 | 1.703 | 4.594 |
mark | 465 | 0.899 | 0.032 | 0.773 | 0.952 |
medical | 465 | 0.405 | 0.282 | 0.046 | 1.487 |
basic | 465 | 11.689 | 3.465 | 4.755 | 26.554 |
lnedu | 465 | 7.706 | 0.373 | 6.730 | 8.839 |
insurance | 465 | 0.396 | 0.136 | 0.127 | 0.937 |
employ | 465 | 0.302 | 0.148 | 0.110 | 0.998 |
lneco | 465 | 10.446 | 0.655 | 8.528 | 12.009 |
une | 465 | 3.439 | 0.670 | 1.200 | 5.620 |
表3 不同权重下房价、房价收入比与城镇化的Moran's I指数Tab.3 Moran's I index of housing prices,housing price-to-income ratios and urbanization under different weights |
年份 | 相邻权重矩阵 | 地理距离权重矩阵 | 经济距离权重矩阵 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
urb_e | urb_I | urb_p | HP | PI | urb_e | urb_I | urb_p | HP | PI | urb_e | urb_I | urb_p | HP | PI | |||
2005 | 0.033** | 0.346*** | 0.346*** | 0.368*** | 0.423*** | 0.029** | 0.096** | 0.133** | 0.064** | 0.086** | 0.234** | 0.175** | 0.314*** | 0.269*** | 0.157** | ||
2006 | 0.026** | 0.391*** | 0.380*** | 0.327*** | 0.401*** | 0.024* | 0.101** | 0.105** | 0.068** | 0.080** | 0.148** | 0.139** | 0.307*** | 0.267*** | 0.145** | ||
2007 | 0.053** | 0.396*** | 0.384*** | 0.359*** | 0.406*** | 0.024* | 0.079** | 0.102** | 0.078** | 0.089** | 0.155** | 0.141** | 0.310*** | 0.258*** | 0.123** | ||
2008 | 0.097** | 0.311** | 0.396*** | 0.315*** | 0.404*** | 0.036** | 0.073** | 0.103** | 0.072** | 0.103** | 0.200** | 0.116** | 0.307*** | 0.202*** | 0.099* | ||
2009 | 0.014** | 0.268** | 0.408*** | 0.335*** | 0.444*** | 0.048** | 0.013** | 0.103** | 0.071** | 0.101** | 0.184** | 0.130** | 0.308*** | 0.221*** | 0.156** | ||
2010 | 0.144** | 0.058** | 0.403*** | 0.320*** | 0.399*** | 0.049** | 0.079** | 0.097** | 0.061** | 0.080** | 0.230** | 0.032** | 0.337*** | 0.203*** | 0.148** | ||
2011 | 0.147* | 0.265** | 0.394*** | 0.358*** | 0.460*** | 0.048** | 0.068** | 0.094** | 0.072** | 0.092** | 0.239** | 0.156** | 0.333*** | 0.225*** | 0.158** | ||
2012 | 0.016* | 0.224** | 0.387*** | 0.350*** | 0.471*** | 0.049** | 0.088** | 0.090** | 0.064** | 0.089** | 0.238** | 0.161** | 0.328*** | 0.240*** | 0.168** | ||
2013 | 0.150* | 0.291** | 0.391*** | 0.330*** | 0.510*** | 0.044* | 0.080** | 0.089** | 0.060** | 0.101** | 0.243*** | 0.165** | 0.327*** | 0.209*** | 0.135** | ||
2014 | 0.142*** | 0.258** | 0.391*** | 0.313*** | 0.481*** | 0.048** | 0.097** | 0.089** | 0.056** | 0.106** | 0.224*** | 0.154** | 0.329*** | 0.183** | 0.102* | ||
2015 | 0.162* | 0.319** | 0.406*** | 0.269** | 0.431*** | 0.066** | 0.101** | 0.093** | 0.041** | 0.072** | 0.193*** | 0.165** | 0.339*** | 0.163** | 0.159** | ||
2016 | 0.197** | 0.342*** | 0.416*** | 0.292** | 0.479*** | 0.075** | 0.108*** | 0.094** | 0.051** | 0.095** | 0.205*** | 0.134** | 0.345*** | 0.178** | 0.206** | ||
2017 | 0.205** | 0.392*** | 0.420*** | 0.312** | 0.467*** | 0.074** | 0.123*** | 0.092** | 0.060** | 0.096** | 0.210*** | 0.137** | 0.344*** | 0.170** | 0.183** | ||
2018 | 0.246** | 0.422*** | 0.418*** | 0.302** | 0.453*** | 0.075** | 0.109*** | 0.088** | 0.054** | 0.092** | 0.202** | 0.159** | 0.337*** | 0.174** | 0.194** | ||
2019 | 0.265** | 0.349** | 0.417*** | 0.262** | 0.415*** | 0.086** | 0.123*** | 0.085** | 0.039** | 0.079** | 0.151** | 0.107* | 0.333*** | 0.164** | 0.165** |
注:***、**和*分别表示在1%、5%和10%显著性水平上显著。 |
表4 空间回归模型LM检验Tab.4 LM test of spatial regression model |
空间自相关检验 | 经济城镇化 | 土地城镇化 | 人口城镇化 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
统计量 | DF | P值 | 统计量 | DF | P值 | 统计量 | DF | P值 | ||||
Spatial error | Moran's I | 3.334 | 1 | 0.000 | 4.290 | 1 | 0.000 | 2.784 | 1 | 0.005 | ||
Lagrange multiplier | 2.460 | 1 | 0.117 | 15.847 | 1 | 0.153 | 6.225 | 1 | 0.013 | |||
Robust Lagrange multiplier | 12.175 | 1 | 0.000 | 0.291 | 1 | 0.590 | 11.207 | 1 | 0.001 | |||
Spatial lag | Lagrange multiplier | 20.993 | 1 | 0.000 | 20.993 | 1 | 0.000 | 0.425 | 1 | 0.515 | ||
Robust Lagrange multiplier | 30.708 | 1 | 0.000 | 30.708 | 1 | 0.000 | 5.407 | 1 | 0.020 | |||
模型选择 | SLM | SLM | SEM |
表5 不同空间权重下房价对城镇化的空间效应估计结果Tab.5 Estimation results of spatial effects of housing prices and housing price-to-income ratios on urbanization under different spatial weights |
变量名称 | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
相邻权重矩阵 | 地理距离权重矩阵 | 经济距离权重矩阵 | |||||||||
urb_p | urb_e | urb_I | urb_p | urb_e | urb_I | urb_p | urb_e | urb_I | |||
lnHP | 2.38*** | 0.0513*** | 7.60*** | 2.63*** | 0.0416*** | 7.58*** | 2.20*** | 0.0387*** | 8.22*** | ||
(-4.058) | (-0.077) | (-3.395) | (-3.802) | (-0.074) | (-3.235) | (-3.902) | (-0.077) | (-3.226) | |||
PI | -2.27*** | 0.63*** | 3.21*** | -2.277*** | 0.657*** | 3.23*** | -1.142*** | 0.485*** | 3.20*** | ||
(-20.14) | (-0.448) | (-18.74) | (-21.42) | (-0.431) | (-18.65) | (-22.17) | (-0.448) | (-18.66) | |||
lnHP2 | -1.827*** | 0.005 | 2.116*** | -1.360*** | 0.004 | 2.118*** | -1.318*** | 0.005 | 2.154*** | ||
(-0.229) | (-0.004) | (-0.186) | (-0.211) | (-0.004) | (-0.177) | (-0.213) | (-0.004) | (-0.177) | |||
PI2 | 2.62 | -1.825* | -3.8*** | 2.12 | -1.656* | -3.7*** | 2.150** | -1.601** | -3.1*** | ||
(-44.9) | (-0.989) | (-41.49) | (-47.67) | (-0.953) | (-41.23) | (-48.93) | (-0.989) | (-41.35) | |||
income | -0.185 | 0.0202** | 0.751** | -0.441 | 0.0210*** | 0.752** | -0.545 | 0.0191** | 0.758** | ||
(-0.355) | (-0.008) | (-0.329) | (-0.378) | (-0.008) | (-0.328) | (-0.39) | (-0.008) | (-0.328) | |||
mark | 9.631* | -0.051 | 14.29*** | 7.749 | -0.031 | 14.32*** | 7.614 | -0.057 | 14.20*** | ||
(-5.433) | (-0.121) | (-5.057) | (-5.832) | (-0.118) | (-5.048) | (-6.062) | (-0.121) | (-5.055) | |||
medical | 1.291*** | 0.0334*** | -0.313 | 1.575*** | 0.0342*** | -0.308 | 1.761*** | 0.0350*** | -0.314 | ||
(-0.372) | (-0.009) | (-0.368) | (-0.413) | (-0.008) | (-0.364) | (-0.43) | (-0.009) | (-0.365) | |||
basic | 0.172*** | 0.00190** | 0.151*** | 0.174*** | 0.00187*** | 0.150*** | 0.178*** | 0.00182** | 0.153*** | ||
(-0.035) | (-0.001) | (-0.032) | (-0.036) | (-0.001) | (-0.031) | (-0.037) | (-0.001) | (-0.031) | |||
lnedu | 4.047*** | 0.023 | 4.871*** | 3.898*** | 0.015 | 4.825*** | 3.760*** | 0.025 | 4.946*** | ||
(-0.796) | (-0.016) | (-0.68) | (-0.812) | (-0.016) | (-0.682) | (-0.804) | (-0.016) | (-0.682) | |||
insurance | 3.383** | 0.148*** | 5.726*** | 4.073*** | 0.139*** | 5.657*** | 5.021*** | 0.151*** | 5.588*** | ||
(-1.492) | (-0.033) | (-1.421) | (-1.577) | (-0.032) | (-1.404) | (-1.832) | (-0.033) | (-1.414) | |||
employ | 4.040*** | -0.0553*** | 1.740** | 4.442*** | -0.0558*** | 1.739** | 4.271*** | -0.0552*** | 1.647* | ||
(-0.904) | (-0.021) | (-0.885) | (-0.99) | (-0.02) | (-0.882) | (-1.11) | (-0.021) | (-0.892) | |||
lngdp | 6.376*** | 0.0605*** | 8.790*** | 6.499*** | 0.0588*** | 8.773*** | 6.642*** | 0.0618*** | 8.860*** | ||
(-0.679) | (-0.014) | (-0.612) | (-0.698) | (-0.014) | (-0.604) | (-0.717) | (-0.014) | (-0.603) | |||
une | -0.081 | -0.005 | 0.492*** | -0.052 | -0.005 | 0.490*** | 0.031 | -0.004 | 0.494*** | ||
(-0.187) | (-0.004) | (-0.181) | (-0.205) | (-0.004) | (-0.18) | (-0.214) | (-0.004) | (-0.18) | |||
0.481*** | 0.492*** | 0.081** | |||||||||
(-0.053) | (-0.100) | (-0.107) | |||||||||
0.544*** | 0.953*** | 0.507*** | 0.949*** | 0.544*** | 0.951*** | ||||||
(-3.57E-05) | (-0.0625) | (-3.39E-05) | (-0.0621) | (-3.58E-05) | (-0.0624) | ||||||
观测数 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | ||
R-squared | 0.812 | 0.852 | 0.872 | 0.877 | 0.875 | 0.786 | 0.886 | 0.853 | 0.864 | ||
时间效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | ||
省份效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
注:***、**和*分别表示在1%、5%和10%显著性水平上显著。 |
表6 不同空间权重下房价、房价收入比对人口城镇化影响的区域差异估计结果Tab.6 Estimated results of regional differences in the impact of housing prices and housing price-to-income ratios on population urbanization under different spatial weights |
变量名称 | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
相邻权重矩阵 | 地理距离权重矩阵 | 经济距离权重矩阵 | |||||||||
lnHP_EAST | -0.482*** | -0.187*** | -0.354*** | ||||||||
(-0.427) | (-0.393) | (-0.392) | |||||||||
PI_EAST | -2.27** | -2.98* | -2.680 | ||||||||
(-10.09) | (-10.08) | (-10.45) | |||||||||
lnHP_MIDDLE | -0.470*** | -0.231*** | -0.062*** | ||||||||
(-0.408) | (-0.407) | (-0.421) | |||||||||
PI_MIDDLE | 12.460 | 12.470 | 10.420 | ||||||||
(-11.39) | (-11.79) | (-12.55) | |||||||||
lnHP_WEST | 0.732*** | 0.960** | 0.749* | ||||||||
(-0.486) | (-0.435) | (-0.431) | |||||||||
PI_WEST | 1.43* | 1.53* | 1.080*** | ||||||||
(-10.66) | (-10.97) | (-11.11) | |||||||||
income | -0.499 | -0.585 | -0.177 | -0.761* | -0.812** | -0.605 | -0.750* | -0.865** | -0.681 | ||
(-0.391) | (-0.378) | (-0.397) | (-0.407) | (-0.388) | (-0.411) | (-0.423) | (-0.403) | (-0.427) | |||
mark | 7.472 | 6.973 | 6.499 | 6.499 | 6.394 | 6.459 | 8.073 | 7.758 | 7.927 | ||
(-5.855) | (-5.846) | (-5.779) | (-6.096) | (-6.084) | (-6.082) | (-6.394) | (-6.374) | (-6.355) | |||
medical | 1.549*** | 1.574*** | 1.513*** | 1.681*** | 1.689*** | 1.686*** | 1.837*** | 1.836*** | 1.861*** | ||
(-0.404) | (-0.403) | (-0.397) | (-0.43) | (-0.43) | (-0.43) | (-0.452) | (-0.453) | (-0.45) | |||
basic | 0.180*** | 0.176*** | 0.203*** | 0.169*** | 0.168*** | 0.186*** | 0.169*** | 0.164*** | 0.181*** | ||
(-0.038) | (-0.038) | (-0.038) | (-0.038) | (-0.037) | (-0.038) | (-0.039) | (-0.039) | (-0.04) | |||
lnedu | 6.376*** | 6.464*** | 6.402*** | 5.816*** | 5.858*** | 5.879*** | 5.551*** | 5.642*** | 5.583*** | ||
(-0.782) | (-0.776) | (-0.785) | (-0.775) | (-0.768) | (-0.783) | (-0.782) | (-0.776) | (-0.789) | |||
insurance | 8.241*** | 8.607*** | -8.777*** | 8.000*** | 8.203*** | 7.942*** | 8.112*** | 8.249*** | 8.558*** | ||
(-1.516) | (-1.545) | (-1.529) | (-1.565) | (-1.598) | (-1.587) | (-1.818) | (-1.879) | (-1.853) | |||
employ | -5.264*** | -5.490*** | -5.176*** | -5.593*** | -5.679*** | -5.506*** | -5.768*** | -5.959*** | -5.614*** | ||
(-0.982) | (-0.967) | (-0.96) | (-1.028) | (-1.012) | (-1.024) | (-1.13) | (-1.112) | (-1.133) | |||
lngdp | 6.784*** | 7.015*** | 6.639*** | 6.739*** | 6.825*** | 6.639*** | 6.835*** | 7.003*** | 6.831*** | ||
(-0.728) | (-0.708) | (-0.714) | (-0.731) | (-0.713) | (-0.723) | (-0.754) | (-0.732) | (-0.746) | |||
une | 0.068 | 0.081 | 0.104 | -0.018 | -0.019 | 0.002 | 0.058 | 0.055 | 0.086 | ||
(-0.202) | (-0.202) | (-0.198) | (-0.214) | (-0.214) | (-0.213) | (-0.225) | (-0.225) | (-0.224) | |||
0.389*** | 0.397*** | 0.427*** | 0.466*** | 0.475*** | 0.481*** | -0.033 | -0.031 | 0.009** | |||
(-0.055) | (-0.055) | (-0.055) | (-0.102) | (-0.100) | (-0.100) | (-0.108) | (-0.108) | (-0.107) | |||
观测数 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | ||
R-squared | 0.892 | 0.723 | 0.855 | 0.859 | 0.732 | 0.752 | 0.528 | 0.435 | 0.618 | ||
时间效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | ||
省份效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
注:***、**和*分别表示在1%、5%和10%显著性水平上显著。 |
[1] |
张博胜, 杨子生. 中国城镇化的农村减贫及其空间溢出效应——基于省级面板数据的空间计量分析[J]. 地理研究, 2020, 39(7):1592-1608.
|
[2] |
田申. 城镇化与房价变动的空间计量——基于省级面板数据分析[J]. 地域研究与开发, 2017, 36(2):12-16.
|
[3] |
赵海益. “土地财政”会导致城镇“用工荒”吗[J]. 当代财经, 2017(7):35-45.
|
[4] |
高波, 陈健, 邹琳华. 区域房价差异、劳动力流动与产业升级[J]. 经济研究, 2012, 47(1):66-79.
|
[5] |
韩民春, 冯钟. 房价上涨对人口城市化的影响——基于房价收入比门槛效应的分析[J]. 城市问题, 2017(5):98-103.
|
[6] |
文乐. 城镇化进程中的土地供给、房价与人口城镇化研究[D]. 武汉: 华中科技大学, 2017.
|
[7] |
黄海洲, 汪超, 王慧. 中国城镇化中住房制度的理论分析框架和相关政策建议[J]. 国际经济评论, 2015(2):29-54,4.
|
[8] |
夏怡然, 陆铭. 城市间的“孟母三迁”——公共服务影响劳动力流向的经验研究[J]. 管理世界, 2015(10):78-90.
|
[9] |
谢福泉, 黄俊晖. 城镇化与房地产市场供需:基于中国数据的检验[J]. 上海经济研究, 2013, 25(8):115-123.
|
[10] |
|
[11] |
张莉, 何晶, 马润泓. 房价如何影响劳动力流动?[J]. 经济研究, 2017, 52(8):155-170.
|
[12] |
|
[13] |
姜松, 王钊. 中国城镇化与房价变动的空间计量分析[J]. 科研管理, 2014, 35(11):163-170.
|
[14] |
吴士炜, 汪小勤. 房价、土地财政与城镇化协调发展关系——基于空间经济学视角[J]. 经济理论与经济管理, 2017(8):25-33.
|
[15] |
|
[16] |
陆铭. 建设用地使用权跨区域再配置:中国经济增长的新动力[J]. 世界经济, 2011, 34(1):107-125.
|
[17] |
朱健, 陈湘满, 袁旭宏. 我国农民工市民化的影响因素分析[J]. 经济地理, 2017, 37(1):66-73.
|
[18] |
杨巧, 陈诚. 经济集聚、住房支付能力与流动人口城市迁移意愿[J]. 现代财经(天津财经大学学报), 2019, 39(1):29-45.
|
[19] |
李辉, 王良健. 房价、房价收入比与流动人口长期居留意愿——来自流动人口的微观证据[J]. 经济地理, 2019, 39(6):86-96.
|
[20] |
王建康, 谷国锋, 姚丽, 等. 中国新型城镇化的空间格局演变及影响因素分析——基于285个地级市的面板数据[J]. 地理科学, 2016, 36(1):63-71.
|
[21] |
赵文哲, 边彩云, 董丽霞. 城镇化、城市房价与农村流动人口户籍迁移[J]. 财经问题研究, 2018(6):122-130.
|
[22] |
|
[23] |
|
[24] |
梅建明, 陈汉芳. 户籍制度对人口城镇化的影响[J]. 中南民族大学学报:人文社会科学版, 2019, 39(5):67-71.
|
[25] |
潘红玉, 周永生, 赵慧, 等. 房价波动与制造业升级:基于省际面板数据的空间计量分析[J]. 科学决策, 2020(4):21-48.
|
[26] |
范柏乃, 吴晓彤, 李旭桦. 城市创新能力的空间分布及其影响因素研究[J]. 科学学研究, 2020, 38(8):1473-1480.
|
[27] |
吴健, 汤磊. 我国省级电力强度影响因素研究——基于空间计量模型分析[J]. 价格理论与实践, 2020(5):53-56.
|
[28] |
周建军, 孙倩倩, 鞠方. 产业结构变迁、房价波动及其经济增长效应[J]. 中国软科学, 2020(7):157-168.
|
/
〈 |
|
〉 |