北京地铁网络时空演化特征评估及演化机制
王志如(1984—),女,内蒙古鄂尔多斯人,博士,讲师,研究方向为基础设施网络规划与可持续。E-mail:wangzhiru@ustb.edu.cn |
收稿日期: 2020-07-17
网络出版日期: 2025-04-25
基金资助
教育部人文社会科学规划项目(18YJC630193)
北京市自然科学基金项目(L181009)
北京市自然科学基金项目(9194028)
国家自然科学基金应急项目(71641027)
中央高校基本科研业务费专项资金资助项目(FRF-BR-20-03A)
Spatio-temporal Evolution Characteristics of Beijing Subway Network and Its Evolution Mechanism
Received date: 2020-07-17
Online published: 2025-04-25
基于复杂网络理论,使用Space-L网络建模方法构建地铁网络空间结构,通过改进地铁网络空间结构连通性评估方法,与网络结构复杂性评估方法,评估地铁网络时空演化特征。以北京地铁为例,构建1971—2020年北京地铁网络结构,分析北京地铁时空网络结构的发育状况、无标度特性和小世界特性的演化特征,结果发现:①北京地铁网络结构连通性发育水平仍然较低,网络结构复杂性较小。②北京地铁网络空间结构扩张过程中,新线路在选择旧车站进行换乘时,既存在优先连接,又存在随机连接。③到目前为止,北京地铁网络空间结构的演化以覆盖型线路为主、优化型线路为辅。④覆盖型线路与优化型线路上的新建车站设置,受到廊道走向与感知范围限制。
王志如 , 张满银 . 北京地铁网络时空演化特征评估及演化机制[J]. 经济地理, 2021 , 41(4) : 48 -56 . DOI: 10.15957/j.cnki.jjdl.2021.04.007
Studying the spatio-temporal evolution characteristics of the subway network is a necessary means to optimize the network structure and conducive to improving the disaster resilience of the system. Based on the complex network theory,this paper uses the Space-L network model to construct the spatial structure of the subway network,and evaluates the spatial and temporal evolution characteristics of the subway network by improving the connectivity assessment method of the subway network spatial structure and the network structure complexity assessment method. Taking the Beijing subway as an example,this study constructs the Beijing subway network structure from 1971 to 2020,analyzes the development status of the Beijing subway network structure,the scale-free characteristics and the evolution characteristics of the small-world characteristics,the results are found: 1) The network structure connectivity development is still at lower level,the network structure complexity is smaller. 2) During the expansion of the spatial structure of the Beijing subway network,when new lines select old stations for transfer,there are both priority connections and random connections. 3) So far,the evolution of the spatial structure of the Beijing subway network has been dominated by covered-type lines and supplemented by optimized-type lines. 4) The setting of newly-built stations on covered-type lines and optimized-type lines is limited by the corridor direction and perception range. Research methods and research results can provide a basis for network optimization and dynamic complexity research on networks.
表1 1988—2020年北京地铁网络线路度分布与K-S检验结果Tab.1 Degree distribution and K-S test of Beijing subway network from 1988 to 2020 |
年份 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | λ | P值 | a | λ | P值 | a | λ | P值 | |||
1988 | 0.0344 | 3.335 | 0.10 | 0.9655 | 4.851 | 0.82 | 0.0225 | 4.808 | 0.93 | ||
1993 | 0.0333 | 3.370 | 0.10 | 0.9667 | 4.900 | 0.82 | 0.0247 | 4.857 | 0.91 | ||
2000 | 0.0523 | 2.896 | 0.12 | 0.9474 | 4.242 | 0.82 | 0.0006 | 4.276 | 0.92 | ||
2001 | 0.0510 | 2.924 | 0.12 | 0.9488 | 4.279 | 0.82 | 0.0002 | 4.338 | 0.91 | ||
2002 | 0.0633 | 2.695 | 0.14 | 0.9363 | 3.964 | 0.82 | 0.0033 | 4.024 | 0.95 | ||
2003 | 0.0745 | 2.519 | 0.15 | 0.9247 | 3.723 | 0.82 | 0.0053 | 3.772 | 0.92 | ||
2004 | 0.0919 | 2.289 | 0.18 | 0.9065 | 3.411 | 0.82 | 0.0235 | 3.459 | 0.92 | ||
2008 | 0.1043 | 2.148 | 0.20 | 0.8930 | 3.219 | 0.82 | 0.0350 | 3.296 | 0.93 | ||
2009 | 0.1279 | 1.906 | 0.24 | 0.8610 | 2.874 | 0.76 | 0.0520 | 2.976 | 0.91 | ||
2011 | 0.1243 | 1.934 | 0.23 | 0.8600 | 2.899 | 0.84 | 0.0520 | 3.002 | 0.94 | ||
2012 | 0.1140 | 2.036 | 0.21 | 0.8740 | 3.043 | 0.83 | 0.0440 | 3.135 | 0.91 | ||
2013 | 0.1141 | 2.037 | 0.21 | 0.8750 | 3.047 | 0.81 | 0.0440 | 3.138 | 0.91 | ||
2014 | 0.1474 | 1.735 | 0.28 | 0.8360 | 2.640 | 0.75 | 0.0670 | 2.760 | 0.89 | ||
2015 | 0.1590 | 1.642 | 0.30 | 0.8230 | 2.517 | 0.72 | 0.0770 | 2.647 | 0.92 | ||
2016 | 0.1561 | 1.667 | 0.30 | 0.8270 | 2.553 | 0.71 | 0.0730 | 2.679 | 0.93 | ||
2017 | 0.1652 | 1.597 | 0.32 | 0.8170 | 2.459 | 0.68 | 0.0810 | 2.592 | 0.94 | ||
2018 | 0.1630 | 1.614 | 0.31 | 0.8200 | 2.482 | 0.69 | 0.0790 | 2.613 | 0.92 | ||
2019 | 0.1578 | 1.655 | 0.30 | 0.8260 | 2.538 | 0.69 | 0.0740 | 2.664 | 0.92 | ||
2020 | 0.1552 | 1.676 | 0.30 | 0.8300 | 2.567 | 0.69 | 0.0720 | 2.691 | 0.92 |
注:K-S检验原假设H0:数据服从某一分布。P<0.05,拒绝原假设。 |
[1] |
|
[2] |
王志如, 苏国锋, 梁作论. 基于信息传递效率的地铁网络小世界特性评价[J]. 清华大学学报:自然科学版, 2016(4):411-416.
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
Oded Cats G K M W. Robustness assessment of link capacity reduction for complex networks[J]. Reliability Engineering & System Safety, 2017(167):544-553.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
周溪召, 智路平. 城市轨道交通网络演化和形成影响因素研究[J]. 交通与运输(学术版), 2016(1):148-151.
|
[13] |
丁益民, 丁卓, 杨昌平. 基于社团结构的城市地铁网络模型研究[J]. 物理学报, 2013(9):508-514.
|
[14] |
|
[15] |
|
[16] |
周群, 马林兵, 陈凯, 等. 一种改进的基于空间句法的地铁可达性演变研究——以广佛地铁为例[J]. 经济地理, 2015, 035(3):100-107.
|
[17] |
黄晓燕, 张爽, 曹小曙. 广州市地铁可达性时空演化及其对公交可达性的影响[J]. 地理科学进展, 2014, 33(8):1078-1089.
|
[18] |
郭谦, 吴殿廷, 鲍捷. 基于换乘效率指数的北京轨道交通网络通达性评价及其成因分析[J]. 经济地理, 2012, 32(11):38-44.
|
[19] |
陈少沛, 李勇, 庄大昌, 等. 地铁网络可达性时空演化及空间形态分析[J]. 测绘科学, 2018, 43(3):123-130.
|
[20] |
龙玉清, 陈彦光. 京津冀交通路网结构特征及其演变的分形刻画[J]. 人文地理, 2019, 34(4):115-125.
|
[21] |
蔡萌, 杜海峰, 费尔德曼. Caveman网络及其在复杂网络熵分析中的应用[J]. 系统工程理论与实践, 2017(9):2403-2412.
|
[22] |
王志如, 梁作论, 袁竞峰, 等. 地铁网络无标度特性分析[J]. 东南大学学报:自然科学版, 2013(4):895-899.
|
/
〈 |
|
〉 |