资源错配、政府干预与新兴产业产能过剩
刘满凤(1964—),女,江西吉安人,博士,教授。主要研究方向为产业发展与协同创新、产业转移与环境污染。E-mail:1312912674@qq.com。 |
收稿日期: 2018-12-07
修回日期: 2019-04-22
网络出版日期: 2025-04-24
基金资助
国家自然科学基金项目(71764007)
国家社会科学基金重大招标项目(15ZDC021)
江西省科技落地计划项目(KJLD12064)
江西省高校哲学社会科学重大招标项目(ZDGG201305)
Resource Misallocation, Government Intervention and Overcapacity in Emerging Industries
Received date: 2018-12-07
Revised date: 2019-04-22
Online published: 2025-04-24
刘满凤 , 刘熙 , 徐野 , 邓云霞 . 资源错配、政府干预与新兴产业产能过剩[J]. 经济地理, 2019 , 39(8) : 126 -136 . DOI: 10.15957/j.cnki.jjdl.2019.08.015
Overcapacity is a difficult problem under the market economy. Since 2009, there are many industries suffering from overcapacity in our country, beside of emerging industry, such as solar and wind power industry, etc. Low-level redundant construction, resources mismatch, and improper government intervention are the main cause of the emerging industries in overcapacity. Establishing the production factors model, the paper theoretically studies the relationship of production resources, government intervention and overcapacity; and conducts the empirical test based on micro-data sets of the wind power industry enterprises. The results show that under the market structure of monopolistic competition, resource mismatch caused by factor distortion seriously hinders the release of production capacity, which results in the accumulation of low-end capacity. Relieving overcapacity depends on optimizing resource allocation and reducing input redundancy. However, inappropriate government subsidies, policy banks' credit tilt and low-cost land transfer and other interventions have weakened the role of resource allocation on the promotion of capacity utilization, and this weakening effect is more obvious for downstream enterprises of industrial chain. Therefore, while improving resource allocation efficiency and avoiding “low-end locking”, it is necessary to change traditional support policies, promote factor market reform, and improve technological innovation capabilities to solve the dilemma of structural overcapacity in emerging industries.
表1 变量定义及计算方法Tab.1 Variable definition and its calculation method |
变量属性 | 变量名称 | 变量代码 | 变量测度 | 均值(标准差) | 最小值,最大值 |
---|---|---|---|---|---|
因变量 | 产能利用率 | CU | EU×SR,DEA方法测算 | 0.5272(0.2934) | 0.0136,1.0000 |
自变量 | 资源配置效率 | AE | DEA方法测算 | 0.5553(0.3042) | 0.0140,1.0000 |
调节变量/ 门槛参数 | 政府补贴 | Subsidy | 上市公司财务报表附注数据库中“补贴收入”,取对数 | 13.9415(4.9428) | 3.6268,21.1323 |
金融支持水平 | Finance | 筹资活动现金流入总额,取对数 | 18.5427(5.6797) | 0.0000,25.8319 | |
土地使用权 | Land | 上市公司财务报表附注数据库中“土地使用权”,取对数 | 19.1914(1.7529) | 13.4479,22.6099 | |
控制变量 | 资产收益率 | Roa | 资产收益率=净利润/总资产 | 0.0227(0.0567) | -0.5860,0.1861 |
城市发展水平 | GDP | 企业所在城市人均GDP,取对数 | 10.9717(0.4549) | 9.5856,11.6449 | |
企业年龄 | Age | 企业成立日到2017年的累计上市年份,取对数 | 2.7277(0.3755) | 0.0000,3.3322 | |
企业规模 | Size | 企业年末用工人数,取对数 | 8.2806(1.2987) | 3.8286,11.8137 |
资料来源:作者整理,下表同。 |
表2 全样本估计结果Tab.2 Estimation results based on different models |
Model Method,Gov | (1.1) FE | (1.2) FE | (2.1) FE,sub | (2.2) Tobit,sub | (2.3) FE,fin | (2.4) Tobit,fin | (2.5) FE,land | (2.6) Tobit,land |
---|---|---|---|---|---|---|---|---|
AEi,t | 0.5677*** (8.52) | 0.5501*** (8.20) | 1.1135*** (6.79) | 1.0733*** (6.86) | 1.2755*** (6.51) | 1.2594*** (6.94) | 1.1729** (2.40) | 1.6853*** (3.62) |
Govi,t×AEi,t | - | - | -0.0430*** (-3.76) | -0.0420*** (-3.91) | -0.0419*** (-3.94) | -0.0422*** (-4.35) | -0.0332 (-1.28) | -0.0625** (-2.55) |
Roai,t | - | 0.4333** (2.44) | 0.4469** (2.57) | 0.4603*** (2.65) | 0.4312** (2.48) | 0.4692*** (2.69) | 0.4705*** (2.61) | 0.5399*** (3.02) |
Gdpi,t | - | 0.1521 (1.08) | 0.1277 (0.92) | 0.0007 (0.01) | 0.0752 (0.54) | -0.0085 (-0.12) | 0.1781 (1.25) | 0.0252 (0.35) |
Agei,t | - | 0.0116 (0.23) | 0.0160 (0.33) | 0.0840* (1.91) | 0.0134 (0.27) | 0.0874** (2.02) | 0.0109 (0.20) | 0.1056** (2.29) |
Sizei,t | - | 0.1709*** (5.53) | 0.1863*** (6.15) | 0.0786*** (2.76) | 0.1834*** (5.94) | 0.0524* (1.87) | 0.1603*** (4.88) | 0.0500* (1.83) |
Govi,t | - | - | 0.0062 (0.58) | 0.0185** (2.07) | 0.0247** (2.54) | 0.0320*** (4.09) | 0.0262 (1.23) | 0.0354* (1.77) |
Constant | 0.2120*** (5.59) | -2.9042* (-1.90) | -2.8524* (-1.92) | -0.9090 (-1.08) | -2.6139* (-1.74) | -0.9361 (-1.19) | -3.5978** (-2.23) | -1.4161 (-1.64) |
F/Wald-value | 72.67*** | 25.49*** | 22.06*** | 112.31*** | 21.28*** | 117.41*** | 18.46*** | 100.64*** |
Hausman | 5.05** | 35.76*** | 50.53*** | - | 36.53*** | - | 48.42*** | - |
LR-test | - | - | - | 238.19*** | - | 214.80*** | - | 239.80*** |
注:括号内为t(z)统计值;***、**、*分别表示在1%、5%、10%的显著性水平下显著,下表同。 |
表3 门槛数量的检验结果Tab.3 Test results based on threshold model |
门槛参数 | 数量 | p | F | 门槛值 | 区间 | Crit10 | Crit5 | Crit1 |
---|---|---|---|---|---|---|---|---|
政府补贴(sub) | 单门槛 | 0.028 | 22.06** | 12.8702 | [12.2590,12.9273] | 16.9396 | 19.6074 | 29.7374 |
双门槛 | 0.360 | 9.47 | 17.8336 | [17.3902,17.8576] | 15.8840 | 19.2419 | 30.4673 | |
金融支持(fin) | 单门槛 | 0.078 | 19.63* | 13.6862 | [13.4786,13.7478] | 18.8157 | 20.8842 | 27.9393 |
双门槛 | 0.706 | 7.23 | 24.3638 | [24.3161,24.4785] | 20.7898 | 25.0881 | 34.5649 | |
土地使用(land) | 单门槛 | 0.046 | 23.20** | 20.3112 | [20.2754,20.3323] | 19.4218 | 22.4865 | 31.6450 |
双门槛 | 0.730 | 7.78 | 20.4757 | [20.4441,20.4906] | 20.1216 | 26.3667 | 37.1775 |
注:表中的F值和10%、5%、1%的临界值均为采用“自抽样”反复抽样500次。 |
表4 门槛回归模型估计结果Tab.4 Estimation results of threshold regression model |
模型 | (3.1)-sub | (3.2)-fin | (3.3)-land |
---|---|---|---|
0.8088*** (5.91) | 0.7101*** (9.24) | 0.5785*** (8.75) | |
0.3356*** (4.12) | 0.4272*** (5.90) | 0.2570** (2.56) | |
Roai,t | 0.4280** (2.48) | 0.4432** (2.55) | 0.4730*** (2.72) |
Gdpi,t | 0.1056 (0.77) | 0.1568 (1.14) | 0.1212 (0.88) |
Agei,t | -0.0030 (-0.06) | 0.0225 (0.47) | 0.0779 (1.52) |
Sizei,t | 0.1779*** (5.91) | 0.1829*** (6.03) | 0.1840*** (6.04) |
Constant | -2.3998 (-0.33) | -3.0745** (-2.06) | -2.8223* (-1.89) |
表5 产业链环节子样本估计结果Tab.5 Estimation results of sub-samples in industrial chain |
模型 | (4.1) FE,sub | (4.2) Tobit,sub | (4.3) FE,fin | (4.4) Tobit,fin | (4.5) FE,land | (4.6) Tobit,land |
---|---|---|---|---|---|---|
AEi,t | 1.0862*** (5.21) | 1.2986*** (6.73) | 1.0810*** (4.49) | 1.3060*** (6.66) | 1.4219*** (2.99) | 1.7054*** (3.68) |
Govi,t×AEi,t | -0.0707*** (-4.57) | -0.0521*** (-3.79) | -0.0537*** (-4.13) | -0.0401*** (-3.69) | -0.0823*** (-3.09) | -0.0613** (-2.49) |
up×Govi,tAEi,t | -0.0335 (-1.33) | -0.0801*** (-3.71) | -0.0206 (-1.09) | -0.0483*** (-3.69) | -0.0309 (-1.24) | -0.0604** (-2.42) |
mid×Govi,tAEi,t | -0.0317** (-2.41) | -0.0543*** (-4.38) | -0.0256** (-2.10) | -0.0458*** (-4.52) | -0.0468* (-1.81) | -0.0684*** (-2.76) |
Roai,t | 0.3364* (1.95) | 0.5017*** (2.80) | 0.3127* (1.80) | 0.5062*** (2.82) | 0.3554** (2.02) | 0.5590*** (3.05) |
Gdpi,t | 0.1292 (0.95) | 0.0052 (0.08) | 0.0668 (0.49) | -0.0028 (-0.04) | 0.1213 (0.88) | 0.0188 (0.27) |
Agei,t | 0.0204 (0.43) | 0.0944** (2.16) | 0.0179 (0.37) | 0.0907** (2.12) | 0.0342 (0.66) | 0.1005** (2.15) |
Sizei,t | 0.1820*** (6.13) | 0.0634** (2.15) | 0.1857*** (6.06) | 0.0387 (1.36) | 0.1743*** (5.49) | 0.0522* (1.65) |
Govi,t | 0.0058 (0.49) | 0.0228*** (2.63) | 0.0120 (0.89) | 0.0331*** (4.29) | 0.0326 (1.57) | 0.0377* (1.89) |
Constant | -2.7786* (-1.90) | -0.9185 (-1.18) | -2.2590 (-1.51) | -0.9249 (-1.27) | -3.2031** (-2.06) | -1.4034* (-1.65) |
F/Wald-value | 19.61*** | 118.90*** | 18.64*** | 119.98*** | 18.47*** | 102.82*** |
Hausman | 83.65*** | - | 75.92*** | - | 88.77*** | - |
LR-test | - | 166.33*** | - | 149.73*** | - | 154.27*** |
表6 稳健性检验:工具变量法Tab.6 Robustness test:instrumental variable method |
模型 | (1) Sub FE-Ⅳ | (2) Sub Tobit-Ⅳ | (3) Sub Sys-GMM | (4) Fin FE-Ⅳ | (5) Fin Tobit-Ⅳ | (6) Fin Sys-GMM | (7) Land FE-Ⅳ | (8) Land Tobit-Ⅳ | (9) Land Sys-GMM |
---|---|---|---|---|---|---|---|---|---|
CUi,t-1 | - | - | 0.4445*** (4.98) | - | - | 0.4371*** (3.78) | - | - | 0.4850*** (4.81) |
AEi,t | 2.1361*** (4.31) | 1.1755*** (4.57) | 0.8648** (1.97) | 3.1445*** (3.05) | 1.6757*** (5.51) | 1.3034** (2.08) | 27.2032 (0.66) | 4.1219*** (3.23) | 4.5489** (2.36) |
Govi.t | 0.0433** (2.09) | 0.0516*** (4.97) | 0.0423*** (2.81) | 0.0859** (2.26) | 0.0602*** (6.26) | 0.0516** (2.32) | 0.8327 (0.66) | 0.1532** (2.49) | 0.1359 (1.62) |
Govi,tAEi,t | -0.1001*** (-3.01) | -0.0541*** (-3.42) | -0.0504* (-1.69) | -0.1338** (-2.41) | -0.0650*** (-4.43) | -0.0587* (-1.79) | -1.3789 (-0.65) | -0.1800*** (-3.05) | -0.2242** (-2.31) |
Roai,t | 0.0582 (0.37) | 0.7918*** (3.12) | 0.2565 (1.31) | 0.0399 (0.22) | 0.7279*** (2.97) | 0.2803 (1.48) | 1.2622 (0.75) | 0.3489 (0.72) | 0.3040 (1.48) |
Gdpi,t | -0.1991 (-1.11) | -0.0395 (-1.20) | -0.2246** (-2.00) | -0.3681 (-1.55) | -0.0241 (-0.77) | -0.0801 (-0.71) | 2.3046 (0.63) | 0.0921 (1.23) | -0.0726 (-0.79) |
Agei,t | 0.0893* (1.72) | 0.0528 (1.10) | 0.2021** (2.00) | 0.0753 (1.28) | 0.0054 (0.11) | 0.1872** (2.34) | 0.5621 (0.66) | 0.0618 (0.73) | 0.1904** (2.01) |
Sizei,t | 0.1115*** (3.81) | -0.0654*** (-5.01) | -0.0166 (-0.43) | 0.1165*** (3.31) | -0.0747*** (-6.01) | -0.0250 (-0.74) | -0.2547 (-0.50) | -0.1267** (-2.48) | -0.0127 (-0.23) |
Constant | 0.5200 (0.27) | 0.3913 (0.96) | 1.6492 (1.10) | 1.3969 (0.61) | -0.0030 (-0.01) | -0.2191 (-0.16) | -40.7058 (-0.65) | -2.8570 (-1.94) | -2.1134 (-1.20) |
Sargan/Hansen检验 | 无过度识别 | 无过度识别 | 无过度识别 | 无过度识别 | 无过度识别 | 无过度识别 | 无过度识别 | 无过度识别 | 无过度识别 |
F/Wald | 7145.43*** | 101.63*** | 73.21*** | 5321.63*** | 136.20*** | 60.19*** | 596.87*** | 30.26*** | 99.07*** |
[1] |
王辉, 张月友. 战略性新兴产业存在产能过剩吗?——以中国光伏产业为例[J]. 产业经济研究, 2015, 74(1):61-70,82.
|
[2] |
白雪洁, 闫文凯. 中国新兴产业产能过剩的形成机理及疏解策略——基于光伏行业的案例分析[J]. 南开学报:哲学社会科学版, 2017(1):133-142.
|
[3] |
|
[4] |
王立国, 鞠蕾. 地方政府干预、企业过度投资与产能过剩:26个行业样本[J]. 改革, 2012(12):52-62.
|
[5] |
莫小东. 政治周期、政府补贴和产能过剩[J]. 投资研究, 2017(4):24-40.
|
[6] |
|
[7] |
|
[8] |
郭长林. 财政政策扩张、纵向产业结构与中国产能利用率[J]. 管理世界, 2016(10):13-33,187.
|
[9] |
王文甫, 明娟, 岳超云. 企业规模、地方政府干预与产能过剩[J]. 管理世界, 2014(10):17-36,46.
|
[10] |
王宇, 罗悦. 外需引导与政府补贴下战略性新兴产业的产能过剩研究——以光伏产业为例[J]. 现代经济探讨, 2018(3):78-81.
|
[11] |
刘阳阳. 政策扶持、资源错配与产能过剩[D]. 北京: 清华大学, 2016.
|
[12] |
林毅夫, 巫和懋, 邢亦青. “潮涌现象”与产能过剩的形成机制[J]. 经济研究, 2010(10):4-19.
|
[13] |
席鹏辉, 梁若冰, 谢贞发, 等. 财政压力、产能过剩与供给侧改革长[J]. 经济研究, 2017(9):86-102.
|
[14] |
刘奕, 林轶琼. 地方政府补贴、资本价格扭曲与产能过剩[J]. 财经问题研究, 2018(11):34-41.
|
[15] |
刘京星, 黄健柏, 丰超. 企业性质、区域差异与产能过剩治理——基于三层级共同前沿 DEA 模型的研究[J]. 中国软科学, 2017(9):127-140.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
白雪洁, 于志强. 资源配置、技术创新效率与新兴产业环节性产能过剩——基于中国光伏行业的实证分析[J]. 当代财经, 2018(1):88-98.
|
[21] |
毛捷, 吕冰洋, 马光荣. 转移支付与政府扩张:基于“价格效应”的研究[J]. 管理世界, 2015(7):29-41,187.
|
[22] |
余东华, 吕逸楠. 政府不当干预与战略性新兴产业产能过剩——以中国光伏行业为例[J]. 中国工业经济, 2015(10):53-68.
|
[23] |
万远鹏. 政府经济行为视角下“中国式”产能过剩[D]. 南昌: 江西财经大学, 2016.
|
/
〈 |
|
〉 |