要素流动、产业协同集聚对区域经济增长影响的空间计量分析——以制造业与生产性服务业为例
汤长安(1974—),男,湖南益阳人,博士,教授,研究方向为产业创新与区域经济发展。E-mail:tchangan@163.com |
收稿日期: 2020-05-23
修回日期: 2021-06-10
网络出版日期: 2025-03-31
基金资助
国家社会科学基金项目(20BJL129)
Spatial Econometric Analysis on the Influence of Elements Flow and Industrial Collaborative Agglomeration on Regional Economic Growth:Based on Manufacturing and Producer Services
Received date: 2020-05-23
Revised date: 2021-06-10
Online published: 2025-03-31
文章以存在密切产业关联的制造业与生产性服务业为例,研究产业协同集聚对生产效率以及创新能力的提升作用,进而实现区域经济“量”与“质”的增长。首先,利用产业协同集聚指数测度2003—2019年中国大陆30个省份制造业与生产性服务业产业协同集聚水平。其次,以省级面板数据构建空间计量模型,从生产效率和技术创新两个角度,探究产业协同集聚对区域经济增长的重要作用。结果表明,产业协同集聚能够提高生产效率、促进创新进步和经济增长,且这种促进作用具有显著的空间溢出效应,对实现区域经济“量”与“质”的增长具有重要意义。因此,各地区要强化一体化发展意识,突破区域界限,加强区域合作,在发挥地区优势的基础上实现共同发展。
汤长安 , 邱佳炜 , 张丽家 , 李红燕 . 要素流动、产业协同集聚对区域经济增长影响的空间计量分析——以制造业与生产性服务业为例[J]. 经济地理, 2021 , 41(7) : 146 -154 . DOI: 10.15957/j.cnki.jjdl.2021.07.016
Taking manufacturing and producer services,which are closely related to industries,as an example,this paper studies the important role of industrial co-agglomeration in improving production efficiency and innovation ability,so as to realize the regional economy growth of "quantity" and "quality". Firstly,based on the industrial synergy agglomeration index,it measures the level of industrial co-agglomeration between manufacturing and producer services in 30 provinces of China from 2003 to 2016. Secondly,it explores the important role of industrial collaborative agglomeration on regional economic growth from the perspective of production efficiency and technological innovation by the means of the spatial measurement model. The results show: the industrial co-agglomeration can improve production efficiency,and promote innovation and economic growth,which has a significant space spillover effect and is of great significance to realize the regional economy growth of "quantity" and "quality". Moreover,the industrial co-agglomeration has a significant spatial spillover effect and has a positive guiding significance to the cross-regional cooperation of the economic development. Therefore,in the course of the current economic development,the regions should strengthen the integrated development consciousness,break through the regional boundary,strengthen the regional cooperation,and realize the common development on the basis of the regional advantages.
表1 变量的描述性统计Tab.1 Descriptive statistics of the variables |
Variable | Obs | mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
LP | 510 | 10.863 | 0.723 | 8.338 | 12.409 |
R | 510 | 2.661 | 0.106 | 1.858 | 2.533 |
Hr | 510 | 9.856 | 1.048 | 6.752 | 11.937 |
K | 510 | 5.398 | 0.888 | 3.326 | 7.746 |
ED | 510 | 8.699 | 0.845 | 5.865 | 9.978 |
Jt | 510 | 11.925 | 2.039 | 4.477 | 14.941 |
表2 空间面板模型的LM检验结果Tab.2 The LM test results of the space panel model |
LM检验 | 地理矩阵(W1) | 经济地理矩阵(W2) | |||
---|---|---|---|---|---|
T值 | P值 | T值 | P值 | ||
LM-lag | 57.886 | 0.000 | 100.262 | 0.000 | |
LM-error | 78.724 | 0.000 | 109.881 | 0.000 | |
R-lmlag | 48.366 | 0.000 | 87.792 | 0.000 | |
R-lmerror | 73.201 | 0.000 | 88.945 | 0.000 |
表3 空间计量模型回归结果Tab.3 Regression results of spatial econometric model |
变量 | 地理矩阵(W1) | 经济地理矩阵(W2) | |||||
---|---|---|---|---|---|---|---|
SLM(I)-re | SEM(I)-re | SDM(I)-re | SLM(I)-re | SEM(I)-re | SDM(I)-fe | ||
c | 0.599(1.55) | 2.180***(3.72) | 1.729***(3.66) | 0.916***(2.43) | 2.201***(4.46) | - | |
R | 0.490***(2.62) | 1.438***(4.83) | 1.123***(3.67) | 0.535***(2.87) | 1.262***(4.58) | 0.648**(1.98) | |
Hr | 0.285***(7.83) | 0.569***(15.30) | 0.349***(7.60) | 0.340***(10.16) | 0.608***(24.33) | 0.411***(7.71) | |
K | 0.057(1.37) | -0.0216(-0.52) | 0.057(1.35) | 0.041(0.98) | -0.027(-0.63) | 0.044*(1.04) | |
ED | -0.0002**(-2.50) | -7.08e-06(-0.08) | -0.002*(-1.65) | -0.0001***(-1.58) | 0.00007***(0.843) | -5.0002***(-1.61) | |
JT | 0.015(1.37) | 0.006***(0.54) | 0.007(0.62) | 0.009***(0.79) | 1.005(0.42) | 0.009(0.3996) | |
W·R | - | - | -0.311(-0.90) | - | - | -0.269(-0.70) | |
W·Hr | - | - | -0.099*(-1.66) | - | - | -0.092(-1.40) | |
W·K | - | -0.181**(-2.52) | - | - | 0.257**(2.38) | ||
W·ED | - | - | 0.0003***(2.23) | - | - | -0.0005**(-2.24) | |
W·JT | - | 0.053**(2.50) | - | 0.088***(3.35) | |||
ρ | 0.551***(10.33) | 0.6971***(9.93) | 0.454***(8.14) | 0.474***(9.73) | 0.501***(7.65) | 0.382***(5.72) | |
R2 | 0.9179 | 0.9140 | 0.9230 | 0.9194 | 0.9153 | 0.9293 | |
LogL | 142.5655 | 134.1495 | 241.4518 | 138.6455 | 123.3557 | 234.8033 | |
SDM→SLM | 46.3953*** | - | - | 136.4427*** |
注:*、**、***表示在10%、5%、1%的显著水平,括号内为t值。表6同。 |
表4 变量的描述性统计Tab.4 Descriptive statistics of the variables |
Variable | Obs | mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
CX | 510 | 12.158 | 17.401 | 0.230 | 104.993 |
R | 510 | 2.655 | 0.339 | 1.411 | 3.531 |
Hr | 510 | 2.180 | 0.105 | 1.858 | 2.543 |
ZJ | 510 | 1.419 | 1.070 | 0.174 | 6.315 |
Wg | 510 | 10.511 | 0.613 | 9.249 | 12.024 |
Fdi | 510 | 11.973 | 2.036 | 4.477 | 14.941 |
Inf | 510 | 9.947 | 0.887 | 6.426 | 11.714 |
表5 空间面板模型的LM检验结果Tab.5 The LM test results of the space panel model |
LM检验 | 地理矩阵(W1) | 经济地理矩阵(W2) | |||
---|---|---|---|---|---|
T值 | P值 | T值 | P值 | ||
LM-lag | 51.840 | 0.000 | 55.86 | 0.000 | |
LM-error | 35.743 | 0.000 | 8.421 | 0.004 | |
R-lmlag | 50.238 | 0.000 | 55.315 | 0.000 | |
R-lmerror | 40.715 | 0.000 | 7.871 | 0.005 |
表6 空间计量模型回归结果Tab.6 Regression results of spatial econometric model |
变量 | 地理矩阵(W1) | 经济地理矩阵(W2) | |||||
---|---|---|---|---|---|---|---|
SLM(I)-re | SEM(I)-fe | SDM(I)-re | SLM(I)-fe | SEM(I)-fe | SDM(I)-re | ||
c | -10.177***(-10.92) | - | -4.722***(-5.57) | - | - | -1.357***(1.9030) | |
R | 0.341***(5.69) | 0.280***(3.88) | 0.368***(5.56) | 0.209***(3.22 ) | 0.240***(3.43) | 0.1025***(0.1219) | |
Hr | -0.192**(-2.55) | -0.283***(-3.76) | -0.226***(-2.97) | -0.206***(-2.85) | -0.202***(-2.71) | -0.016(0.0474) | |
ZJ | -0.071(-1.13) | -0.125*(-1.87) | 0.086***(1.26) | -0.118*(-1.88) | -0.095(-1.41) | 0.333***(0.0474) | |
Wg | 0.916***(9.88) | 1.392***(22.68) | 0.00001***(4.77) | 0.733***(7.36) | 1.408***(22.05) | 9.32e-061***(1.67e-06) | |
Inf | 0.079***(4.41) | 0.067***(3.64) | 2.23e-06***(0.98) | 0.072***(4.06) | 0.079***(4.46) | 0.000103**(0.000017) | |
FDI | -0.229***(-3.65) | -0.161**(-2.21) | -0.116***(6.16) | -0.241*(-3.46) | -0.228***(-3.32) | 0.0049(0.013) | |
W·R | - | - | -0.114(0.450) | - | - | 1.338***(0.504) | |
W·Hr | - | - | 0.100(1.01) | - | - | -0.223*(0.124) | |
W·ZJ | - | - | 0.422***(4.43) | - | - | 0.164***(0.154) | |
W·Wg | - | - | 0.00002***(2.50e-06) | - | - | -8.00e-07***(4.69e-06) | |
W·Inf | - | - | 1.75e-06(0.42) | - | - | 0.000027***(0.000100) | |
W·FDI | - | - | 0.025(0.76) | - | - | -0.1971***(0.0507) | |
ρ | 0.271***(5.16) | - | 0.384***(7.55) | 0.459***(8.39) | - | 0.263***(0.139) | |
R2 | 0.921 | 0.848 | 0.924 | 0.780 | 0.870 | 0.756 | |
Log L | 121.156 | 121.156 | 127.595 | 231.288 | 137.853 | 108.631 | |
SDM→SLM | - | - | 83.936*** | 76.929*** |
[1] |
|
[2] |
|
[3] |
|
[4] |
钟韵, 秦嫣然. 中国城市群的服务业协同集聚研究——基于长三角与珠三角的对比[J]. 广东社会科学, 2021(2):5-15,254.
|
[5] |
刘书瀚, 于化龙. 生产性服务业集聚的经济增长效应研究——基于中国三大城市群的比较分析[J]. 中国科技论坛, 2020(6):44-53,145.
|
[6] |
|
[7] |
张明斗, 王亚男. 制造业、生产性服务业协同集聚与城市经济效率——基于“本地—邻地”效应的视角[J]. 山西财经大学学报, 2021, 43(6):5-28.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
李骏, 刘洪伟, 陈银. 产业集聚、技术学习成本与区域经济增长——以中国省际高技术产业为例[J]. 软科学, 2018, 32(4):95-99.
|
[12] |
汤长安, 张丽家. 产业协同集聚的区域技术创新效应研究——以制造业与生产性服务业为例[J]. 湖南师范大学社会科学学报, 2020, 49(3):140-148.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
张军, 吴桂英, 张吉鹏. 中国省际物质资本存量估算:1952—2000[J]. 经济研究, 2004(10):35-44.
|
/
〈 |
|
〉 |