利用Landsat卫星OLI遥感影像定量反演了广东省珠江三角洲附近水体的CODMn、悬浮泥沙含量及叶绿素浓度,并以此为主要依据建立水体污染源目视解译标志,识别出工业污染、采砂/采矿污染、陆地养殖污染、库/海湾养殖污染、生活废水污染等5类77处污染源,绘制了该区域的污染空间分布图。结果表明:该区域污染物浓度局部变化特征可归纳为均匀无变化型、分段间歇式变化型、“栅格状”变化型、“陡增缓释”型、“缓增缓释”型等5种; 综合3种污染物浓度及局部变化特征、高分辨率遥感影像和周边环境等信息可有效识别桥梁与河床浅滩反射、工业污染与采砂采矿污染等难判、易误判类型;污染源目视解译准确率达92%。
By Using Landsat satellite OLI remote sensing images, this paper, quantitatively retrieving the suspended sediment concentration, chlorophyll concentration and CODMn concentration of the Water of the Pearl River Delta in Guangdong, takes those 3 kinds of pollutants’ concentration and distribution characteristics as the information source, plots the spatial distribution of pollution source and identifies 77 pollution sources in the study. Those pollution sources were summed up into 5 categories, such as, industrial pollution, sand mining / mining pollution, land aquaculture pollution, pollution of reservoir / Bay culture, pollution of domestic waste water, etc. The results show that the local variation characteristics of pollutant concentration in this area can be classified as 5 types; stable type, intermittent change type, "grid-like" change type, "steep increase and slow release" type, "slow increase and slow release" type. Comprehensive information on the concentration and local variation of 3 pollutants, high-resolution remote sensing images and surrounding environment can effectively identify difficult and easily misjudged types of bridge and riverbed shoal reflection, industrial pollution and sand mining pollution. The accuracy of visual interpretation of pollution sources is 92%.
[1] 刘博,肖长来,梁秀娟,等. 吉林市城区浅层地下水污染源识别及空间分布[J].中国环境科学,2015,35(2):457-464.
[2] M. Tamer Ayvaz.A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems[J].Journal of Contaminant Hydrology,2010,117(1):46-59.
[3] Sreenivasulu Chadalavada,Bithin Datta,Ravi Naidu.Optimal Identification of Groundwater Pollution Sources Using Feedback Monitoring Information:A Case Study[J].Environmental Forensics,2012,13(2):140-153.
[4] 李海光,施加春,吴建军. 污染场地周边农田土壤重金属含量的空间变异特征及其污染源识别[J].浙江大学学报:农业与生命科学版,2013,39(3):325-334.
[5] 卜红梅,谭香,张全发. 陕西省金水河中溶解性重金属的分析及污染源识别[J].环境化学,2009,28(1):107-111.
[6] S.A.Mashi,M.M. Alhassan.Effects of Wastewater Discharge on Heavy Metals Pollution in Fadama Soils in Kano City,Nigeria[J].Biomedical and Environmental Sciences,2007(1):70-77.
[7] 蒋博峰,孙卫玲. Assessment of heavy metal pollution in sedi-ments from Xiangjiang River(China) using sequential extraction and lead isotope analysis[J].Journal of Central South University,2014,21(6):2 349-2 358.
[8] 夏军,翟晓燕,张永勇. 水环境非点源污染模型研究进展[J].地理科学进展,2012,31(7):941-952.
[9] 李春林,胡远满,刘淼,等. 城市非点源污染研究进展[J].生态学杂志,2013,32(2):492-500.
[10] 丁晓雯,沈珍瑶. 涪江流域农业非点源污染空间分布及污染源识别[J].环境科学,2012,33(11):4 025-4 032.
[11] 张郁,刘洁,杨青山. 黑龙江垦区农业生产与面源污染的脱钩分析与调控模拟[J].经济地理,2017,37(6):177-182.
[12] 芦会杰. 典型生活垃圾处理设施恶臭排放特征及污染评价[J].环境科学,2017,38(8):3 178-3 184.
[13] Nicola Pettarin,Marina Campolo,Alfredo Soldati.Urban air pollution by odor sources:Short time prediction[J].Atmospheric Environment,2015,37(9):74-82.
[14] 广东省统计局. 广东统计年鉴(2016)[M].北京:中国统计出版社,2016.
[15] 黄铎,孙莹,张世君,等. 珠江三角洲传统村落生态侵蚀时空演变特征[J].地球信息科学学报,2018,20(3):340-350.
[16] 张昌延,何江涛,张小文,等. 珠江三角洲高砷地下水赋存环境特征及成因分析[J].环境科学,2018(8):1-14.
[17] 袁雯,杨凯. 我国沿海高强度开发区水资源政策研究──以长江三角洲为例[J].经济地理,1996,16(4):11-15.
[18] 邓孺孺,何执兼,陈晓翔,等. 珠江口水域水污染遥感定量分析[J].中山大学学报:自然科学版,2002,41(3):99-103.
[19] 周方方. 水库水体叶绿素a光学性质及浓度遥感反演模式研究[D].杭州:浙江大学,2011.
[20] 邓孺孺,何颖清,秦雁,等. 分离悬浮质影响的光学波段(400 -900nm)水吸收系数测量[J].遥感学报,2012,16(1):174-191.