城市地理与新型城镇

高房价背景下大中城市商品住宅库存压力——基于PSR框架的评价与分析

  • 张祚 ,
  • 卢新海 ,
  • 罗翔 ,
  • 周敏 ,
  • 陈昆仑
展开
  • 1.华中师范大学 公共管理学院,中国湖北 武汉 430079;
    2.华中科技大学 公共管理学院,中国湖北 武汉 430074;
    3.湖北大学 资源环境学院,中国湖北 武汉 430062
张祚(1982—),男,湖北武汉人,博士,副教授。主要研究方向为城市住房与土地资源管理。E-mail:zhangzuocug@163.com。
※罗翔(1978—),男,江西九江人,博士,副教授。主要研究方向为区域经济学与发展经济学。E-mail:philiplaw@163.com。

收稿日期: 2017-08-28

  修回日期: 2018-03-21

  网络出版日期: 2025-03-27

基金资助

国家自然科学基金项目(71774066);中央高校基本业务经费项目(2020516032116、CCNU18ZYTS05);湖北省教育厅人文社会科学项目(17Y014)

Inventory Pressure of Large and Medium-sized Cities’ Commodity Housing in Context of High Housing Prices: PSR-based Evaluation and Analysis

  • ZHANG Zuo ,
  • LU Xinhai ,
  • LUO Xiang ,
  • ZHOU Min ,
  • CHEN Kunlun
Expand
  • 1. Collage of Public Administration, Central China Normal University, Wuhan 430079, Hubei, China;
    2. College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China;
    3. School of Resources and Environmental Science, Hubei University, Wuhan 430062, Hubei, China

Received date: 2017-08-28

  Revised date: 2018-03-21

  Online published: 2025-03-27

摘要

在当前中国城市高房价背景下,基于“压力—状态—响应(Pressure-State-Response,PSR)”框架,对35个大中城市各项商品住宅库存压力指标进行测度,并进一步通过GIS工具和多种不平等指数分别对区域间、城市间差异进行分析,为城市住房调控和供给侧改革提供决策依据。结果表明:①库存压力综合因子得分与三个子系统的协调度并不呈正相关关系且评价结果不均等程度较大;②城市级别越高,综合因子得分、协调度得分越低,而东、中、西部地区综合因子得分不均等程度总体呈现阶梯下降趋势;③库存“状态”指标得分较大的城市大多是房价与房价收入比相对更低的城市;④通过“压力—状态—响应”得分的排序组合分类可以有效对不同城市表现差异进行甄别。最终结论:区域与城市间库存压力、状态与响应的差异性决定了因城施策,采取差异化政策导向与调控措施是构建房地产平稳健康发展长效机制的必然途径。

本文引用格式

张祚 , 卢新海 , 罗翔 , 周敏 , 陈昆仑 . 高房价背景下大中城市商品住宅库存压力——基于PSR框架的评价与分析[J]. 经济地理, 2018 , 38(8) : 83 -91 . DOI: 10.15957/j.cnki.jjdl.2018.08.011

Abstract

The purpose of this study is based on the "Pressure-State-Response (PSR)" framework to measure the inventory pressure indicators of urban commodity housing of 35 cities in large and medium-sized Chinese cities in the context of high current housing prices. Further, our analysis offers a basis for better policy controlling and decision-making in supply-side structural reform of urban housing by heterogeneity analysis of inventory pressure in different cities and regions. Research methods of this study includes principal component analysis, inequality index analysis and GIS-based spatial analysis. The results indicated that: (1) There is no positive correlation between the comprehensive factor score of inventory pressure and the coordination degree of three subsystems, and the evaluation results are unequal. (2)The higher level of city, the lower score of comprehensive factor and coordination degree, and the inequality degree of comprehensive factor overall shows a downward trend of ladder from the east to the west. (3) The higher score of inventory "State" indicators are mostly with lower housing prices and HPIR (Housing Price Income Ratio). (4) Based on the "Pressure-State-Response" score sorting and combinations,it can effectively classify different cities' performance. This paper concludes that the regional and inter-city differences of inventory pressure of commodity housing in performance of "Pressure", "State" and "Response" asks the local government to conduct differentiation policy orientation and controlling measures, which is the inevitable way to establish a long-term and healthy development mechanism of real estate.

参考文献

[1] Chen J,Guo F,Wu Y.One decade of urban housing reform in China:Urban housing price dynamics and the role of migration and urbanization,1995-2005[J].Habitat International,2011,35(1):1-8.
[2] 张祚,陈昆仑,涂姗,等. 中国城市居民住房来源构成与省际差异——基于“五普”与“六普”数据的分析[J].世界地理研究,2014(3):52-63.
[3] Yue S,Hongyu L.Housing Prices and Economic Fundamentals:A Cross City Analysis of China for 1995 - 2002[J].Economic Research Journal,2004,6:78-86.
[4] 甘犁,尹志超,谭继军. 中国家庭金融调查报告:2014[M].成都:西南财经大学出版社,2015.
[5] Wu J,Gyourko J,Deng Y.Evaluating conditions in major Chi-nese housing markets[J].Regional Science & Urban Economics,2012,42(3):531-543.
[6] Yang Z,Chen J.Housing Affordability and Housing Policy in Urban China[M].Berlin:Springer Berlin Heidelberg,2014.
[7] Zhang Z,Tang W.Analysis of spatial patterns of public attentionon housing prices in Chinese cities:A web search engine approach[J].Applied Geography,2016,70:68-81.
[8] 陆铭. 供求的空间匹配[J].上海国资,2016(1):17.
[9] 魏加宁,杨坤. 有关当前经济下行成因的综合分析[J].经济学家,2016(9):5-14.
[10] 尹希果,杨倩. 房地产去库存化对中国宏观经济的影响——基于金融加速器的数值模拟分析[J].经济问题,2016(8):35-41.
[11] 沈孝强,吴次芳. 中国商品住宅库存及其消化能力研究[J].中国土地科学,2015,29(9):73-80.
[12] Chen J,Yang Z,Wang Y P.The New Chinese Model of Public Housing:A Step Forward or Backward?[J].Housing Studies,2014,29(4):534-550.
[13] 张祚,凌旭,周敏,等. 商品房去库存压力下的保障性住房建设思考[J].中国房地产,2017(3):38-47.
[14] 张祚,李江风,李治.国外住房问题和住房政策研究——回顾及启示[J].公共管理学报,2009,6(04):112-122,128.
[15] Levrel H,Kerbiriou C,Couvet D,et al.OECD pressure-state-response indicators for managing biodiversity:a realistic perspective for a French biosphere reserve[J].Biodiversity and Conservation,2009,18(7):1 719.
[16] Sekovski I,Newton A,Dennison W C.Megacities in the coast-al zone:Using a driver-pressure-state-impact-response framework to address complex environmental problems[J].Estuarine,Coastal and Shelf Science,2012,96:48-59.
[17] Zhang X C,Ma C,Zhan S F,et al.Evaluation and simulation for ecological risk based on emergy analysis and Pressure-State-Response Model in a coastal city,China[J].Procedia Environmental Sciences,2012,13:221-231.
[18] Bai X,Tang J.Ecological security assessment of Tianjin by PSR model[J].Procedia Environmental Sciences,2010,2:881-887.
[19] 祁豪荣,孙强强,刘明,等. 基于知识图谱和PSR框架的北京区域土壤重金属研究现状分析[J].中国农业大学学报,2017,22(12):211-220.
[20] 彭建,武文欢,刘焱序,等. 基于PSR框架的内蒙古自治区土壤保持服务分区[J].生态学报,2017,37(11):3 849-3 861.
[21] 冯科,郑娟尔,韦仕川,等. GIS和PSR框架下城市土地集约利用空间差异的实证研究——以浙江省为例[J].经济地理,2007(5):811-814,818.
[22] 李国平,李治,张祚. 基于PSR框架的城市土地集约利用评价研究——以陕西省为例[J].华东经济管理,2009,23(10):32-36.
[23] 宋永永,米文宝,仲俊涛,等.宁夏耕地集约利用的时空格局演化[J].经济地理,2015,35(9):172-181.
[24] Lin Y C,Huang S L,Budd W W.Assessing the environmental impacts of high-altitude agriculture in Taiwan:A Driver-Pressure-State-Impact-Response (DPSIR) framework and spatial emergy synthesis[J].Ecological indicators,2013,32:42-50.
[25] Wang S,Sun C,Li X,et al.Sustainable Development in China?s Coastal Area:Based on the Driver-Pressure-State-Welfare-Response Framework and the Data Envelopment Analysis Model[J].Sustainability,2016,8(9):958.
[26] 李玲,朱道林,胡克林. 基于PSR模型的房地产调控政策对房价影响的研究——以北京市为例[J].资源科学,2012,34(4):787-793.
[27] 李松,綦群高,张小雷. 基于PSR响应模型对乌鲁木齐市非户籍人口与房地产市场的相关性验证[J].建筑经济,2009(5):63-66.
[28] 孟勉,李文斌,许东卫. 我国房地产市场的泡沫检验——基于现值模型[J].经济地理,2008,28(5):155-159.
[29] Hagen D A,Wang K.Rental Housing and the Natural Vacancy Rate[J].Journal of Real Estate Research,2010,32(4):413-434.
[30] 朱一中,曹裕. 基于PSR模型的广东省城市土地集约利用空间差异分析[J].经济地理,2011,31(8):1 375-1 380.
[31] 缪仁炳,徐朝晖. 信息能力国际比较的主成分分析法[J].数理统计与管理,2002,21(3):1-5.
[32] 程永宏. 改革以来全国总体基尼系数的演变及其城乡分解[J].中国社会科学,2007(4):45-60.
[33] 曹裕,陈晓红,马跃如. 城市化、城乡收入差距与经济增长——基于我国省级面板数据的实证研究[J].统计研究,2010,27(3):29-36.
[34] Tan S,Wang S,Cheng C.Change of Housing Inequality in Ur-ban China and Its Decomposition:1989-2011[J].Social Indicators Research,2016,129(1):29-45.
[35] 原鹏飞,王磊. 我国城镇居民住房财富分配不平等及贡献率分解研究[J].统计研究,2013,30(12):69-76.
[36] 罗楚亮. 城镇居民住房不均等性的变化[J].中国人口科学,2013(4):14-25.
[37] Head A,Lloyd-Ellis H.Housing liquidity,mobility and the la-bour market[J].The Review of Economic Studies,2012:rds004.
[38] M. O. Lorenz.Methods of Measuring the Concentration of Wealth[J].Journal of the American Statistical Association,1904,9(70):209-219.
文章导航

/