采用ArcGIS技术和空间计量经济学模型,对我国地级行政区1998—2015年PM2.5污染时空演变特征进行分析,并对PM2.5污染的空间自相关性及影响PM2.5污染的因素进行经验识别。结果表明:①1998—2013年PM2.5年均值整体处于上升趋势且呈阶段性波动特征,但2013年之后有下降趋势;②PM2.5具有明显的空间自相关特征,呈高—高集聚和低—低集聚特征;③基于IPAT模型的PM2.5污染影响因素分析显示,PM2.5污染不仅受本地区的经济社会因素影响,而且还受到邻近地区的PM2.5影响;④在地级市层面上,PM2.5污染满足EKC假说,即随着经济发展水平的提高,地区污染水平呈现先上升后下降的倒U型曲线特征。最后,在时空演变和空间计量分析的基础上,提出治理PM2.5污染的政策建议。
In this paper, we use ArcGIS software to analysis the spatial-temporal evolution of PM2.5 in China's prefecture-level cities from 1998 to 2015, and use the spatial econometric model to analysis the spatial autocorrelation of haze pollution and empirical identification of influencing factors of PM2.5 pollution. The results show that: (1) during the period of 1998 to 2013, the average value of PM2.5 is increasing and the trend of fluctuation is fluctuating in the middle stage, but PM2.5 shows a decreasing trend after 2013; (2) PM2.5 has obvious spatial autocorrelation characteristics, which is characterized by high-high and low-low agglomeration of the pollution of PM2.5; (3) The results show that the PM2.5 pollution is not only affected by the economic and social factors of the region, but also affected by PM2.5 pollution of the neighboring areas, under the IPAT model; (4) The PM2.5 pollution meets the EKC hypothesis that the level of PM2.5 pollution is characterized by the inverted U-curve with the level of economic development. Finally, on the basis of temporal and spatial evolution and spatial econometric analysis, the paper puts forward some policy suggestions to PM2.5 pollution treatment.
[1] World Bank.Cost of Pollution in China:Economic Estimates of Physical Damages [R].2007.
[2] 张建忠,孙瑾,缪宇鹏. 雾霾天气成因分析及应对思考[J].中国应急管理,2014(1):16-21.
[3] Juneng L,Latif M T,Tangang F T et al. Spatio-temporal charac-teristics of PM10 concentration across Malaysia[J].Atmospheric Environment,2009,43(30):4 584-4 594.
[4] Perez P.Combined model for PMi0 forecasting in a large city[J].Atmospheric Environment,2012,60(4):271-276.
[5] Juneng L,Latif M T,Tangang F.Factors influencing the varia-tions of PM10 aerosol dust in Klang Valley,Malaysia during the summer[J].Atmospheric Environment,2011,45(26):4 370-4 378.
[6] 耿海清,任景明. 我国PM2.5污染控制策略及环境影响评价的应对建议[J].环境保护科学,2012,38(6):56-59.
[7] 李名升,张建辉,张殷俊,等. 近10年中国大气PM_(10)污染时空格局演变[J].地理学报,2013,68(11):1 504-1 512.
[8] 李婕,滕丽. 珠三角城市空气质量的时空变化特征及影响因素[J].城市观察,2014(5):85-95.
[9] 王瑞峰. 我国雾霾污染影响因素分析[D].南昌:江西财经大学,2015.
[10] 王占山,李云婷,陈添,等. 2013年北京市PM_(2.5)的时空分布[J].地理学报,2015,70(1):110-120.
[11] 周侃. 中国环境污染的时空差异与集聚特征[J].地理科学,2016,36(7):989-997.
[12] Wang J,Christopher S A.Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass:Implications for air quality studies[J].Geophysical Research Letters,2003,30(21):Art. No. 2095.
[13] 刘华军,杜广杰. 中国城市大气污染的空间格局与分布动态演进——基于161个城市AQI及6种分项污染物的实证[J].经济地理,2016,36(10):33-38.
[14] 彭丽思,孙涵,聂飞飞. 中国大气污染时空格局演变及影响因素研究[J].环境经济研究,2017,2(1):42-56.
[15] Donkelaar A V,Martin R V,Levy R C,et al.Satellite-based estimates of ground-level fine particulate matter during extreme events:A case study of the Moscow fires in 2010[J].Atmospheric Environment,2011,45(34):6 225-6 232.
[16] Batterman S,Xu L,Chen F,et al.Characteristics of PM2.5,concentrations across Beijing during 2013-2015[J].Atmospheric Environment,2016,145(8):104-114.
[17] Xing Y F,Xu Y H,Shi M H,et al.The impact of PM2.5 on the human respiratory system[J].Journal of Thoracic Disease,2016,8(1):E69.
[18] 王振波,方创琳,许光,等. 2014年中国城市PM_(2.5)浓度的时空变化规律[J].地理学报,2015,70(11):1 720-1 734.
[19] 杨昆,杨玉莲,朱彦辉,等. 中国PM_(2.5)污染与社会经济的空间关系及成因[J].地理研究,2016,35(6):1 051-1 060.
[20] 蔡怡静,李太平. 城市空气质量影响因素的实证分析[J].环境保护与循环经济,2015,35(2):65-68,71.
[21] 吴玉鸣. 空间计量经济模型在省域研发与创新中的应用研究[J].数量经济技术经济研究,2006(5):74-85,130.
[22] Dietz T,Rosa E A.Rethinking the Environmental Impacts of Population,Affluence and Technology[J].Human Ecology Review,1994,1(2):277-300.
[23] 马丽梅,张晓. 中国雾霾污染的空间效应及经济、能源结构影响[J].中国工业经济,2014(4):19-31.