文章通过网络爬虫获取贵州省2010—2022年旅游流数据,构建旅游流网络及其结构韧性的综合评估及攻击指标体系,并借助复杂网络、指数随机图等方法,实证探讨了贵州省旅游流网络结构韧性的变化特征及其影响因素。结果表明:①贵州省旅游流网络结构韧性呈现先下降后上升的态势,旅游流网络联系的增强并未带来网络结构韧性的提升。韧性水平较高的地区多为东南部的旅游中心城市;②分维度来看,贵州省旅游流网络形成了较为典型的“核心—边缘”层级结构,网络的匹配性明显,传输性在不断提升,小团体集聚现象开始凸显;③旅游流网络结构在随机攻击下呈现出鲁棒性特征,而在蓄意攻击下脆弱性较为显著,且在蓄意攻击下网络承受能力随时间推移整体呈现上升趋势,旅游流核心网络不断拓展;④网络内生结构、个体属性以及外生网络变量共同影响着旅游流网络结构韧性变化。其中,网络互惠性、经济水平、产业结构、政府支持与接待能力对旅游流网络结构韧性变化具有显著正向影响,市场规模对旅游流网络结构韧性变化的正向作用不断凸显,而网络边数与空间距离对旅游流网络结构韧性变化具有明显的抑制作用。
Based on the tourism flow data from 2010 to 2022 in Guizhou Province obtained through web crawler,this paper constructs the tourism flow network,its structural resilience evaluation and the simulation index system using the methods of the complex networks and the exponential random graph models (ERGM),and explores the evolution process of the resilience of tourism flow network structure (RTFNS) and its influencing factors. The results show that: 1) The RTFNS in Guizhou Province initially decreased and then increased during the studied period. The strengthening of the tourism flow network connection did not necessarily improve the resilience of the tourism flow network structure. Regions with high resilience level were mainly tourism center cities with well-developed tourism and attractive core tourist attractions. 2) In terms of dimensions,the tourism flow network in Guizhou Province has formed a typical "core-edge" hierarchical structure,with obvious matching of the network,increasing transmission. The phenomenon of small-group agglomeration has become prominent. 3) The tourism flow network structure demonstrated robustness characteristics against random attacks. Under intentional attacks,the vulnerability is more significant. However,under intentional attacks,the network's tolerance displayed an overall upward trend over time,and the core network continued to expand. 4) The endogenous structure of the network,the individual attributes,and the exogenous network variables all have a significant impact on the RTFNS. The reciprocity of network structure,the economic level,the industrial structure,the government support and the reception capacity have a significant positive impact on the RTFNS. The positive effect of market size on the RTFNS is increasingly prominent,while the number of network edges and spatial distance have a significant inhibitory impact on the RTFNS.
[1] Holling C S.Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics,1973,4(1):1-23.
[2] 谢永顺,王成金,韩增林,等. 哈大城市带网络结构韧性演化研究[J]. 地理科学进展,2020,39(10):1619-1631.
[3] 魏冶,修春亮. 城市网络韧性的概念与分析框架探析[J]. 地理科学进展,2020,39(3):488-502.
[4] Boschma R.Towards an evolutionary perspective on regional resilience[J]. Regional Studies,2015,49(5):733-751.
[5] 叶欣梁,何一,孙瑞红. 脆弱与反脆弱:旅游业韧性研究进展与述评[J]. 旅游学刊,2023,38(10):31-48.
[6] 谢朝武,赖菲菲,黄锐. 疫情危机下旅游韧性体系建设与旅游高质量发展[J]. 旅游学刊,2022,37(9):3-5.
[7] 方叶林,王秋月,黄震方,等. 中国旅游经济韧性的时空演化及影响机理研究[J]. 地理科学进展,2023,42(3):417-427.
[8] 狄乾斌,陈科其,陈小龙. 疫情冲击下北京市旅游业经济韧性测度及其影响因素[J]. 经济地理,2023,43(1):133-140.
[9] Dogru T,Marchio E A,Bulut U,et al.Climate change:Vulnerability and resilience of tourism and the entire economy[J].Tourism Management,2019,72:292-305.
[10] 郭向阳,明庆忠,杨春宇,等. 喀斯特生态脆弱区旅游生态系统韧性时空变化及多尺度障碍因素——以贵州省为例[J]. 经济地理,2023,43(10):190-200.
[11] 王庆伟,梅林,姜洪强,等. 中国旅游城市星级饭店韧性时空分异及影响因素[J]. 地理科学,2022,42(8):1483-1491.
[12] 杨秀平,贾云婷,翁钢民,等. 城市旅游环境系统韧性的系统动力学研究——以兰州市为例[J]. 旅游科学,2020,34(2):23-40.
[13] Calgaro E,Lloyd K.Sun,sea,sand and tsunami:Examing disaster vulnerability in the tourism community of Khao Lak,Thailand[J].Singapore Journal of Tropical Geography,2008,29(3):288-306.
[14] Forster J,Schuhmann P W,Lake I R,et al.The influence of hurricane risk on tourist destination choice in the Caribbean[J]. Climatic Change,2012,114:745-768.
[15] Marshall N A,Tobin R C,Marshall P A,et al.Social vulnerability of marine resource users to extreme weather events[J]. Ecosystems,2013,16:797-809.
[16] Tervo-Kankare K.Entrepreneurship in nature-based tourism under a changing climate[J]. Current Issues in Tourism,2019,22(11):1380-1392.
[17] Ntounis N,Parker C,Skinner H,et al.Tourism and hospitality industry resilience during the Covid-19 pandemic:Evidence from England[J]. Current Issues in Tourism,2022,25(1):46-59.
[18] Liu A,Pratt S.Tourism's vulnerability and resilience to terrorism[J]. Tourism Management,2017,60:404-417.
[19] Khalid U,Okafor L E,Shafiullah M.The effects of economic and financial crises on international tourist flows:A cross-country analysis[J]. Journal of Travel Research,2020,59(2):315-334.
[20] 方叶林,苏雪晴,黄震方,等. 中国东部沿海五大城市群旅游流网络的结构特征及其韧性评估——基于演化韧性的视角[J]. 经济地理,2022,42(2):203-211.
[21] 王章郡,周小曼,方忠权. 基于新冠疫情冲击的城市旅游流网络结构韧性评估——以重庆市中心城区为例[J]. 干旱区资源与环境,2022,36(11):148-157.
[22] 魏石梅,潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报,2021,76(6):1394-1407.
[23] 郭卫东,钟业喜,冯兴华. 基于脆弱性视角的中国高铁城市网络韧性研究[J]. 地理研究,2022,41(5):1371-1387.
[24] 彭翀,陈思宇,王宝强. 中断模拟下城市群网络结构韧性研究——以长江中游城市群客运网络为例[J]. 经济地理,2019,39(8):68-76.
[25] Crespo J,Suire R,Vicente J.Lock-in or lock-out? How structural properties of knowledge networks affect regional resilience[J]. Journal of Economic Geography,2014,14(1):199-219.
[26] 吴康,方创琳,赵渺希. 中国城市网络的空间组织及其复杂性结构特征[J]. 地理研究,2015,34(4):711-728.
[27] 赵渺希,黎智枫,钟烨,等. 中国城市群多中心网络的拓扑结构[J]. 地理科学进展,2016,35(3):376-388.
[28] 徐维祥,周建平,周梦瑶,等. 长三角协同创新网络韧性演化及驱动机制研究[J]. 科技进步与对策,2022,39(3):40-49.
[29] 吴迪,王诺,于安琪,等. “丝路”海运网络的脆弱性及风险控制研究[J]. 地理学报,2018,73(6):1133-1148.
[30] 王倩,赵林,于伟,等. 中国旅游经济系统韧性的时空变化特征与影响因素分析[J]. 地理与地理信息科学,2020,36(6):113-118.
[31] 邵秀英,冯敬,王阳华. 山西省旅游经济韧性时空特征及影响因素研究[J]. 国土资源科技管理,2022,39(6):96-111.
[32] 王兆峰,张先甜. 黄河流域旅游经济系统韧性的时空差异特征及其影响因素[J]. 地理与地理信息科学,2023,39(3):112-121.
[33] 杨丽,王姣姣,付玉慧,等. 中国夜间旅游资源的空间分布特征及影响因素研究[J]. 资源开发与市场,2023,39(12):1673-1683.
[34] 盛科荣,张红霞,赵超越. 中国城市网络关联格局的影响因素分析——基于电子信息企业网络的视角[J]. 地理研究,2019,38(5):1030-1044.