基于人口普查数据,利用人口结构指数、人口密度与标准差椭圆,解析人口空间分布演变特征,结合土地利用数据、夜间灯光数据与POI地理大数据等多源数据,利用队列因素法、FLUS-Markov模型与多源信息融合方法,预测未来人口规模及土地利用空间格局,模拟未来长沙城市人口空间分布格局发展趋势。结果表明:①2000—2020年长沙市主城区人口呈现“集聚—离散”的双重特征、“圈层—分异”的空间结构、“单中心+多组团”有机疏散的分布格局,城市人口空间分布从“中心高度集聚”逐渐向“边缘迅速发展”转变,人口重心向西南侧迁移,呈现“内疏外扩”的发展趋势。②2021—2035年长沙市主城区人口分布格局整体保持相对稳定,常住人口规模将稳步增长,增速逐年下降。利用FLUS-Markov模型预测未来土地利用空间格局,总体Kappa系数为0.91,建设用地的向外扩张与人口规模的持续增长,将进一步强化未来人口空间分布的圈层式结构与向外拓展趋势。③未来长沙市主城区人口空间分布格局整体保持相对稳定,核心区、中心城区和近郊区街道人口密度的空间差异显著,逐渐形成4个人口密度高集聚区和2个次集聚区。
Based on the census data,this paper uses the population structure index,population density and standard deviation ellipse to analyze the evolution characteristics of population spatial distribution. Combining with the multi-source data such as land use data,night light data and POI data,it predicts the future urban population size and land use spatial pattern,and simulates the future development trend of population spatial distribution pattern in Changsha by the means of the queue factor method,FLUS-Markov model and multi-source information fusion. The results show that: 1) From 2000 to 2020,the population in the main urban areas of Changsha City presents the dual characteristics of "agglomeration and dispersion",the spatial structure of "circle layer and differentiation",and the distribution pattern of organic evacuation of "single center + multiple groups". The spatial distribution of urban population gradually changes from "highly concentrated center" to "rapid development on the edge",and the gravity centers of population move to the southwest,showing the development trend of "thinning inside and expanding outside". 2) From 2021 to 2035,the population distribution pattern in the main urban areas of Changsha City will remain relatively stable,and the size of permanent population will increase steadily,with the growth rate decreasing year by year. It uses the FLUS-Markov model to predict the future spatial pattern of land use,and the overall Kappa coefficient is 0.91. The outward expansion of construction land and the continuous growth of population size will further strengthen the circular structure and outward expansion trend of population spatial distribution in the future. 3) In the future,the spatial distribution pattern of population in the main urban areas of Changsha is relatively stable as a whole,and the spatial difference of population density in the core area,the central city area and the suburban streets will be significant,which will gradually form 4 clusters with high population density and 2 sub-clusters.
[1] 赵荣,王恩涌,张小林,等. 人文地理学(第二版)[M]. 北京:高等教育出版社,2006.
[2] Zhao M,Cheng W M,Zhou C H,et al.GDP spatialization and economic differences in south China based on NPP-VIIRS nighttime light imagery[J]. Remote Sensing,2017,9(7):673-693.
[3] Wang L T,Wang S X,Zhou Y S,et al.Mapping population density in China between 1990 and 2010 using remote sensing[J]. Remote Sensing of Environment,2018,210:269-28.
[4] 甄峰,李哲睿,谢智敏. 基于人口流动的城市内部空间结构特征及其影响因素分析——以南京市为例[J]. 地理研究,2022,41(6):1525-1539.
[5] C1ark C. Urban population densities[J]. Journal of Royal Statistical Society,1951,114:490-496.
[6] 桂志鹏,梅宇翱,吴华意,等. 顾及POI人口吸引力异质性的城市人口空间化方法[J]. 地球信息科学学报,2022,24(10):1883-1897.
[7] 吴华意,胡秋实,李锐,等. 城市人口时空分布估计研究进展[J]. 测绘学报,2022,51(9):1827-1847.
[8] 邹艳,张绍良,闵扬海. 城市人口规模及空间分布模拟与预测[J]. 城市问题,2020(6):64-72.
[9] 刘涛,彭荣熙,卓云霞,等. 2000—2020年中国人口分布格局演变及影响因素[J]. 地理学报,2022,77(2):381-394.
[10] 周鹏超,张宏敏. 河南省城市人口增长与土地扩张协调性分析[J]. 现代城市研究,2019(7):110-117.
[11] 刘云霞,田甜,顾嘉钰,等. 基于大数据的城市人口社会经济特征精细时空尺度估计——数据、方法与应用[J]. 人口与经济,2022(1):42-57.
[12] 王宏亮,吴健生,高艺宁,等. 城市公共资源与人口分布的空间适配性分析——以深圳市为例[J]. 北京大学学报:自然科学版,2021,57(6):1143-1152.
[13] 史莎娜,谢炳庚,胡宝清,等. 桂西北喀斯特山区人口分布特征及其与自然因素的关系[J]. 地理科学,2019,39(9):1484-1495.
[14] 贾占华,谷国锋. 东北地区人口分布的时空演变特征及影响因素[J]. 经济地理,2016,36(12):60-68.
[15] 何艳虎,龚镇杰,林凯荣. 基于地理大数据和多源信息融合的区域未来人口精细化空间分布模拟研究——以珠江三角洲为例[J]. 地理科学,2022,42(3):426-435.
[16] 朱佩娟,郎泽慧,贺清云,等. 长沙城市空间破碎化的格局特征及其影响因素[J]. 地理研究,2020,39(8):1739-1754.
[17] 张善余. 人口地理学概论[M]. 上海:华东师范大学出版社,1999.
[18] 张志斌,潘晶,达福文. 兰州城市人口空间结构演变格局及调控路径[J]. 地理研究,2012,31(11):2055-2068.
[19] 金淑婷,李博,杨永春,等. 中国城市分布特征及其影响因素[J]. 地理研究,2015,34(7):1352-1366.
[20] Chen Y D,Guo F,Wang J C,et al.Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100[J]. Scientific Data,2020,7(1):83-85.
[21] LIU X,LIANG X,LI X,et al.A future land use simulation model(FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning,2017,168(5):94-116.
[22] 林伊琳,赵俊三,陈国平,等. 基于MCR-FLUS-Markov模型的区域国土空间格局优化[J]. 农业机械学报,2021,52(4):159-170,207.
[23] Aburas M M,Abdullah S H,Ramli M F,et al.Simulating and monitoring future land-use trends using CA-Markov and LCM models[J]. IOP Conference Series:Earth and Environmental Science,2018,DOI:10.1088/1755-1315/169/1/012050.
[24] 金梦婷,徐丽萍,徐权. 基于FLUS-Markov模型的多情景景观生态风险评价与预测——以南疆克州为例[J]. 干旱区研究,2021,38(6):1793-1804.
[25] Pontius R G,Walker R,Yao Kumah R,et al.Accuracy assessment for a simulation model of Amazonian deforestation[J]. Annals of the Association of American Geographers,2007,97(4):677-695.
[26] 柏中强,王卷乐,杨飞. 人口数据空间化研究综述[J]. 地理科学进展,2013,32(11):1692-1702.
[27] Yue T X,Wang Y A,Liu J Y,et al.Surface modelling of human population distribution in China[J]. Ecological Modelling,2005,181(4):461-478.
[28] Breiman L.Random forests[J]. Machine Learning,2001,45:5-32.
[29] Hu L J,He Z Y,Liu J P.Adaptive multi-scale population spatialization model constrained by multiple factors:A case study of Russia[J]. The Cartographic Journal,2016,54(3):265-282.
[30] 杨小唤,江东,王乃斌,等. 人口数据空间化的处理方法[J]. 地理学报,2002,57(S):70-75.
[31] 赵璐,赵作权. 基于特征椭圆的中国经济空间分异研究[J]. 地理科学,2014,34(8):979-986.