The study constructed an analysis framework for housing purchase restriction intensities based on the policy diffusion theory,takes 49 prefecture-level cities involved in the second round of housing purchase restriction as the research objects,quantitatively measures the housing purchase restriction intensity,and analyzes their spatio-temporal diffusion pattern. It uses the GWR model to explore the internal mechanisms of different cities' housing purchase restriction intensities. The results show that: 1) The intensity of housing purchase restriction policies shows the flexible and irregular diffusion characteristics,it shows the jumping diffusion mode in cities with high-intensity diffusion,and the infectious diffusion mode in urban agglomerations. The gradient pattern of housing purchase restriction intensity shifts to the gradient pattern which takes the urban agglomerations as the unit at the national level. 2) Cities' housing purchase restriction policies are determined comprehensively by multidimensional demands like controlling house prices,stabilizing growth of economy,preserving investment,responding to central regulation,and benchmarking with peer cities,the effects of which are spatio-temporal heterogeneous. In the temporal dimension,although cities' demands on house prices,preserving investment and stabilizing growth of economy may change gradually,the demands for benchmarking cities remain the same. In the spatial dimension,effects of different factors show differences between the eastern,central,and western regions while similarity exists within urban agglomerations. 3) The spatial-temporal characteristics of housing purchase restriction policy diffusion are the result of the combination of various influencing factors,the housing purchase restriction intensity gradually shows a gradient pattern within urban agglomerations. Therefore, the inter-city benchmarking should be an important factor influencing cities' policy. In the future,the horizontal interaction under centralized power should be comprehensively portrayed,so as to more deeply understand the characteristics and internal mechanisms of our country's city public policy diffusion.
[1] 李超,倪鹏飞,万海远. 中国住房需求持续高涨之谜:基于人口结构视角[J]. 经济研究,2015,50(5):118-133.
[2] 孟庆斌,荣晨. 中国房地产价格泡沫研究——基于马氏域变模型的实证分析[J]. 金融研究,2017(2):101-116.
[3] 黄昕,董兴,平新乔. 地方政府房地产限购限贷限售政策的效应评估[J]. 改革,2018(5):107-118.
[4] 张德荣,郑晓婷. “限购令”是抑制房价上涨的有效政策工具吗?——基于70个大中城市的实证研究[J]. 数量经济技术经济研究,2013,30(11):56-72.
[5] 黄拓夫,贺清云,朱翔. 基于断点回归分析的长沙市住宅限购政策对成交面积影响的评估[J]. 经济地理,2021,41(9):79-90.
[6] 方兴. 中国房地产限购政策能够有效抑制房价上涨吗——基于70个大中城市的实证研究[J]. 财经科学,2018(1):41-53.
[7] 董晶,王莉. 限购影响房地产市场的机制与对策分析[J]. 理论探讨,2017(5):94-98.
[8] 安辉,何萱,邹千邈. 中国房地产限售政策对房价的影响研究——兼论限售和限购的政策组合效应[J]. 中国管理科学,2021,29(8):35-43.
[9] 郎昱,施昱年,叶剑平. 高质量实现住房供需均衡:限购与限贷政策效果的再验证[J]. 宏观质量研究,2021,9(6):30-43.
[10] 邓柏峻,李仲飞,张浩. 限购政策对房价的调控有效吗[J]. 统计研究,2014,31(11):50-57.
[11] 曹清峰. 空间“邻近效应”与地方政府住房限购政策的实施[J]. 南开经济研究,2017(1):77-89.
[12] 曹清峰,王家庭,陈天烨,等. 什么影响了地方政府住房限购决策?——考虑政策异质性的中央与地方政府博弈[J]. 公共管理学报,2015,12(4):82-89.
[13] 邵磊,秦韶聪,任强. 因城施策背景下住房限购政策的有效性和异质性——基于RDiT方法的实证分析[J]. 中央财经大学学报,2021(11):117-128.
[14] 米晋宏,刘冲. 住房限购政策与城市房价波动分析[J]. 上海经济研究,2017(1):101-111.
[15] 王亚华,陈相凝. 探寻更好的政策过程理论:基于中国水政策的比较研究[J]. 公共管理与政策评论,2020,9(6):3-14.
[16] 翟绍果,李娱佳,王柯宁. 政策科学70年的议题转换、范式转型与方法转变[J]. 社会政策研究,2022(2):16-29.
[17] WalkerR J L. The diffusion of innovations among the American States[J].The American Political Science Review,1969,63(3):880-899.
[18] 王浦劬,赖先进. 中国公共政策扩散的模式与机制分析[J]. 北京大学学报:哲学社会科学版,2013,50(6):14-23.
[19] 吕芳. 条块差异与公共服务政策的扩散[J]. 政治学研究,2021(5):77-88,157.
[20] 朱旭峰,赵慧. 政府间关系视角下的社会政策扩散——以城市低保制度为例(1993—1999)[J]. 中国社会科学,2016(8):95-116.
[21] 章高荣. 高风险弱激励型政策创新扩散机制研究——以省级政府社会组织双重管理体制改革为例[J]. 公共管理学报,2017,14(4):1-15,153.
[22] 韩啸,魏程瑞. 风险如何影响政策扩散?——以环境信息公开为例[J]. 公共管理与政策评论,2021,10(5):95-104.
[23] 彭川宇,刘月. 城市科技创新人才政策扩散动因素时空差异研究[J]. 科技进步与对策,2022,39(24):81-90.
[24] 朱亚鹏,丁淑娟. 政策属性与中国社会政策创新的扩散研究[J]. 社会学研究,2016,31(5):88-113,243.
[25] 林雪霏. 政府间组织学习与政策再生产:政策扩散的微观机制——以“城市网格化管理”政策为例[J]. 公共管理学报,2015,12(1):11-23,153-154.
[26] 王洛忠,庞锐. 中国公共政策时空演进机理及扩散路径:以河长制的落地与变迁为例[J]. 中国行政管理,2018,395(5):63-69.
[27] Mitchell J L.Does policy diffusion need space?Spatializing the dynamics of policy diffusion[J]. Policy Studies Journal,2018,46(2):424-451.
[28] Cohen-Vogel L,Ingle W K.When neighbours matter most:Innovation,diffusion and state policy adoption in tertiary education[J]. Journal of Education Policy,2007,22(3):241-262.
[29] 钱滔. 地方政府治理与房地产市场发展[J]. 浙江社会科学,2010(3):7-10,126.
[30] 谢志岿,曹景钧. 房地产调控:从行政控制到利益协调——目标替代的非正式规则与房地产调控模式转型[J]. 公共行政评论,2012,5(3):86-112,181.
[31] 杨恒. 我国房地产调控有效性分析[J]. 宏观经济研究,2014(3):64-72.
[32] 刘琼,职朋,佴玲莉,等. 住房限购政策扩散:内部诉求还是外部压力[J]. 中国土地科学,2019,33(2):57-66.
[33] Zhu X.Mandate versus championship:Vertical government intervention and diffusion of innovation in public services in authoritarian china[J]. Public Management Review,2014,16(1):117-139.
[34] Gilardi F.Who learns from what in policy diffusion processes?[J]. American Journal of Political Science,2010,54(3):650-666.
[35] 彭纪生,仲为国,孙文祥. 政策测量、政策协同演变与经济绩效:基于创新政策的实证研究[J]. 管理世界,2008(9):25-36.
[36] 孙锐,孙雨洁. 青年科技人才引进政策评价体系构建及政策内容评估[J]. 中国科技论坛,2020(11):120-128.
[37] 李刚,李建平,孙晓蕾,等. 主客观权重的组合方式及其合理性研究[J]. 管理评论,2017,29(12):17-26.
[38] 陈银娥,李鑫,李汶. 中国省域科技创新效率的影响因素及时空异质性分析[J]. 中国软科学,2021(4):137-149.
[39] 刁贝娣,丁镭,苏攀达,等. 中国省域PM_(2. 5)浓度行业驱动因素的时空异质性研究[J]. 中国人口·资源与环境,2018,28(9):52-62.
[40] 张红历,秦志龙,董春,等. 2000—2017年中国人文发展水平及其时空异质性研究[J]. 中国软科学,2022(3):88-98.
[41] Huang B,Wu B,Barry M.Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science,2010,24(3-4):383-401.
[42] 沈杨,汪聪聪,高超,等. 基于城市化的浙江省湾区经济带碳排放时空分布特征及影响因素分析[J]. 自然资源学报,2020,35(2):329-342.
[43] Brunsdon C,Fotheringham A S,Charlton M E.Geographically weighted regression:A method for exploring spatial non-stationarity[J]. Geographical Analysis,1996,28(28):281-298.
[44] Hurvich C M,Simonoff J S,Tsai C L.Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion[J]. Journal of the Royal Statistical Society,1998,60(2):271-293.
[45] Fotheringham A S,Brunsdon C,Charlton M.Geographically Weighted Regression:The Analysis of Spatially Varying Relationships[M]. John Wiley & Sons,2003.
[46] Fotheringham A S,Crespo R,Yao J.Geographical and temporal weighted regression (GTWR)[J]. Geographical Analysis,2015,47(4):431-452.
[47] 石磊,陈乐一,李玉双. 区域经济增长的同群效应——来自中国城市数据的经验证据[J]. 地理研究,2020,39(4):853-864.
[48] 徐勇. 区域社会视角下农村集体经营与家庭经营的根基与机理[J]. 中共党史研究,2016(4):12-27.