文章以2021年北京市Airbnb数据为基础,综合运用OLS回归和空间计量模型方法对北京市Airbnb房源价格影响因素进行研究。结果表明:①不同类型特征变量对房源价格的解释力从高到低依次为:房源特征、声誉特征、房东特征、邻里特征,房源物理属性是消费者支付意愿和Airbnb房价的决定因素;②房东特征是房源价值的重要组成部分,更多的身份验证信息和更短的回复时间有助于实现Airbnb房源溢价;③不同项目评分对价格的影响存在显著差异,其中性价比和干净整洁的评分影响最为显著;④交通可达性、旅游景点、周边酒店供应量对价格有显著积极影响;⑤空间计量模型的拟合优度优于传统OLS模型,Airbnb房价存在显著的空间溢出效应。
Based on the Beijing data of Airbnb in 2021, this study explores the influencing factors of housing price in Airbnb using the models of OLS and spatial econometric analysis. The results show that: 1) The explanatory power of influencing factors are sorted as follows from high to low: housing characteristics,reputation characteristics,landlord characteristics and neighborhood characteristics. The physical attributes of housing are the determinants of Airbnb housing price and consumers' willingness-to-pay. 2) Landlord characteristics are an important part of the property value. More verification information and shorter response time contribute to increase the housing price. 3) There are significant differences in the impact of different scores on the price, among which the ratings of value of money and cleanliness have the most significant impact. 4) Traffic accessibility,tourist attractions and hotel supply have significant positive impacts on the price. 5)The goodness of fit of spatial econometric model is better than that of OLS model,the housing price of Airbnb has significant spatial spillover effect.
[1] Böcker L,Meelen T.Sharing for people,planet or profit? Analysing motivations for intended sharing economy participation[J].Environmental Innovation and Societal Transitions,2017,23:28-39.
[2] Guttentag D,Smith S,Potwarka L,et al.Why Tourists Choose Airbnb:A Motivation-Based Segmentation Study[J].Journal of Travel Research,2017,57(3):342-359.
[3] Xu F,La L,Zhen F,et al.A data-driven approach to guest experiences and satisfaction in sharing[J].Journal of Travel & Tourism Marketing,2019,36(4):484-496.
[4] Bao Y,Ma E,La L,et al.Examining the Airbnb accommodation experience in Hangzhou through the lens of the Experience Economy Model[J].Journal of Vacation Marketing,2021:1333053117.
[5] Chen Y,Xie K.Consumer valuation of Airbnb listings:A hedonic pricing approach[J].International Journal of Contemporary Hospitality Management,2017,29(9):2405-2424.
[6] Faye B.Methodological discussion of Airbnb's hedonic study[J].Annals of Tourism Research,2021,86:103079.
[7] La L,Xu F,Hu M,et al.Location of Airbnb and hotels:The spatial distribution and relationships[J].Tourism Review,2021,77(1):209-224.
[8] Xu F,Hu M,La L,et al.The influence of neighbourhood envionment on Airbnb:A geographically weighed regression analysis[J].Tourism Geographies,2020,22(1):192-209.
[9] Yeon J,Kim S J,Song K,et al.Examining the impact of short-term rental regulation on peer-to-peer accommodation performance:A difference-in-differences approach[J].Current Issues in Tourism,2020,DOI:10.1080/13683500.2020.1814704.
[10] 卢东,曾小桥,徐国伟. 基于扎根理论的共享住宿选择意愿影响因素及机理研究[J]. 人文地理,2021,36(2):184-192.
[11] 刘颖洁. 中美在线民宿短租购买意愿影响因素比较[J]. 经济地理,2020,40(1):234-240.
[12] 夏馨颖,张宏磊,田原,等. 北京市Airbnb时空演变特征及其影响因素[J]. 经济地理,2020,40(11):68-76.
[13] 梅林,姜洪强. 基于Airbnb数据的北京市民宿空间分异过程、因素与趋势[J]. 经济地理,2021,41(3):213-222.
[14] 牛阮霞,何砚. 基于特征价格模型的共享住宿平台房源价格影响因素研究[J]. 企业经济,2020,39(7):27-36.
[15] 王春英,陈宏民. 共享短租平台住宿价格及其影响因素研究——基于小猪短租网站相关数据的分析[J]. 价格理论与实践,2018(6):14-17.
[16] 吴晓隽,裘佳璐. Airbnb房源价格影响因素研究——基于中国36个城市的数据[J]. 旅游学刊,2019,34(4):13-28.
[17] 岳鑫. 论共享住宿行业的问题及对策研究[J]. 中国商论,2021(14):31-33.
[18] 朱传广,唐焱,吴群. 基于Hedonic模型的城市住宅地价影响因素研究——以南京市为例[J]. 地域研究与开发,2014,33(3):156-160.
[19] 夏秋月,路婕,刘超杰,等. 大数据背景下郑州市中原区二手房特征价格研究[J]. 地域研究与开发,2020,39(1):83-88.
[20] Tong B,Gunter U.Hedonic pricing and the sharing economy:how profile characteristics affect Airbnb accommodation prices in Barcelona,Madrid,and Seville[J].Current Issues in Tourism,2020:1-20.
[21] Dudás G,Kovalcsik T,Vida G,et al.Price determinants of Airbnb listing prices in Lake Balaton Touristic Region,Hungary[J].European Journal of Tourism Research,2020.
[22] Wang D,Nicolau J L.Price determinants of sharing economy based accommodation rental:A study of listings from 33 cities on Airbnb.com[J].International Journal of Hospitality Management,2017,62:120-131.
[23] Gunter U,önder I,Zekan B.Modeling Airbnb demand to New York City while employing spatial panel data at the listing level[J].Tourism Management,2020,77:104000.
[24] Cai Y,Zhou Y,Jenny Ma J,et al.Price Determinants of Airbnb Listings:Evidence from Hong Kong[J].Tourism Analysis,2019,24(2):227-242.
[25] Ert E,Fleischer A,Magen N.Trust and reputation in the sharing economy:The role of personal photos in Airbnb[J].Tourism Management,2016,55:62-73.
[26] Zervas G,Proserpio D,Byers J W.The rise of the sharing economy:Estimating the impact of Airbnb on the hotel industry[J].Journal of Marketing Research,2017,54(5):687-705.
[27] 张玉山,邓子元,邓宏亮. 中国陶艺村的发展及其对村民收入增长的影响[J]. 经济地理,2019,39(3):172-179.
[28] Gibbs C,Guttentag D,Gretzel U,et al.Pricing in the sharing economy:A hedonic pricing model applied to Airbnb listings[J]. Journal of Travel & Tourism Marketing,2018,35(1):46-56.
[29] Xie K,Mao Z.Locational strategy of professional hosts:Effect on perceived quality and revenue performance of Airbnb listings[J]. Journal of Hospitality & Tourism Research,2019,43(6):919-929.
[30] Chica-Olmo J,González-Morales J G,Zafra-Gómez J L.Effects of location on Airbnb apartment pricing in Málaga[J].Tourism Management,2020,77:103981.
[31] Robertson D,Oliver C,Nost E.Short-term rentals as digitally-mediated tourism gentrification:Impacts on housing in New Orleans[J].Tourism Geographies,2020,DOI:10.1080/1461 6688.2020.1765011.
[32] önder I,Weismayer C,Gunter U.Spatial price dependencies between the traditional accommodation sector and the sharing economy[J].Tourism Economics,2019,25(8):1150-1166.