采用超效率SBM模型对中国绿色科技创新效率进行测度,并基于引力模型构建空间关联网络,进而对网络结构特征及网络影响因素进行分析。结果表明:①中国绿色科技创新效率总体呈波动增长态势,东部地区明显高于中、西部地区,近年来东部地区效率增长相对平稳,中部地区增长较大,而西部地区下降较为明显。②中国已形成一个结构稳定的绿色科技创新效率空间关联网络,网络关系数、网络密度波动增长,网络效率不断下降,但仍具有较强的小世界性。③网络核心—边缘结构明显,上海、北京、浙江处于中心位置,中介作用显著,新疆、宁夏、内蒙古等偏远省份处于边缘位置。④四大板块内部联系稀疏,板块间联系紧密,溢出效应较强。⑤相邻矩阵、经济发展水平差异矩阵、开放程度差异矩阵显著正向影响空间关联,而地理距离、知识基础差异矩阵显著负向影响空间关联关系的建立。
The super efficiency SBM model is used to measure the efficiency of China's green science and technology innovation,and the spatial correlation network is constructed based on the gravity model, and then the network structure characteristics and network influencing factors are analyzed. The results show that: 1) The overall efficiency of green scientific and technological innovation in China shows a fluctuating growth trend,and the efficiency growth in the eastern region is significantly higher than that in the central and western regions. In recent years,the efficiency growth in the eastern region is relatively stable, the growth in the central region is large, and the decline in the western region is more obvious. 2) China has formed a structurally stable spatial correlation network of green scientific and technological innovation efficiency. The number of network relationships and network density show the characteristic of fluctuating increase, and the network efficiency continues to decline, but it still has a strong small world. 3) The core-edge structure of the network is obvious. Shanghai,Beijing and Zhejiang are in the center and play a significant intermediary role. Remote provinces such as Xinjiang, Ningxia and Inner Mongolia are in the edge. 4) The internal links of the four plates are sparse, the links between plates are close,and the spillover effect is strong. 5) Adjacency matrix,economic development level difference matrix and openness difference matrix have a significant positive impact on spatial correlation, while geographical distance and knowledge base difference matrix have a significant negative impact on the establishment of spatial correlation.
[1] 周亮,车磊,周成虎. 中国城市绿色发展效率时空演变特征及影响因素[J]. 地理学报,2019,74(10):2027-2044.
[2] 刘汉初,樊杰,周侃. 中国科技创新发展格局与类型划分——基于投入规模和创新效率的分析[J]. 地理研究,2018,37(5):910-924.
[3] 罗良文,梁圣蓉. 中国区域工业企业绿色技术创新效率及因素分解[J]. 中国人口·资源与环境,2016,26(9):149-157.
[4] 樊杰,赵艳楠. 面向现代化的中国区域发展格局:科学内涵与战略重点[J]. 经济地理,2021,41(1):1-9.
[5] Lin S,Ji S,Marinova D,et al.Evaluation of the green technology innovation efficiency of China's manufacturing industries:DEA window analysis with ideal window width[J]. Technology Analysis and Strategic Management,2018,30(1):1-16.
[6] Ana Paula Faria and Natália Barbosa and Joana Bastos. Portuguese regional innovation systems efficiency in the European Union context[J]. European Planning Studies,2020,28(8):1599-1618.
[7] 崔蓉,费锦华,孙亚男. 中国省际绿色创新生产率的变动及其空间溢出效应研究[J]. 宏观经济研究,2019,41(6):132-145.
[8] 王晓辰,韩增林,彭飞,等. 中国海洋科技创新效率发展格局演变与类型划分[J]. 地理科学,2020,40(6):890-899.
[9] 向云波,王圣云,邓楚雄. 长江经济带化工产业绿色发展效率的空间分异及驱动因素[J]. 经济地理,2021,41(4):108-117.
[10] Yi M,Wang Y,Yan M,et al.Government R&D subsidies,environmental regulations,and their effect on green innovation efficiency of manufacturing industry:Evidence from the Yangtze River Economic Belt of China[J]. International Journal of Environmental Research and Public Health,2020,17(4):1330.
[11] Wang W,Yu B,Yan X,et al.Estimation of innovation's green performance:A range-adjusted measure approach to assess the unified efficiency of China's manufacturing industry[J]. Journal of Cleaner Production,2017,149(15):919-924.
[12] 陈明星,周素红,何深静,等. 人文与经济地理学的传承与创新:青年学者的责任[J]. 地理研究,2018,37(3):449-472.
[13] 种照辉,覃成林. “一带一路”贸易网络结构及其影响因素——基于网络分析方法的研究[J]. 国际经贸探索,2017,33(5):16-28.
[14] 邵汉华,周磊,刘耀彬. 中国创新发展的空间关联网络结构及驱动因素[J]. 科学学研究,2018,36(11):2055-2069.
[15] 刘兰剑,葛贝贝. 创新效率视角下高技术产业空间关联网络及其影响因素研究[J]. 研究与发展管理,2019,31(6):37-49.
[16] 刘佳,宋秋月. 中国旅游产业绿色创新效率的空间网络结构与形成机制[J]. 中国人口·资源与环境,2018,28(8):127-137.
[17] 晁艺璇,王崇锋,刘欣荣,等. 基于合作创新网络视角的创新策略选择研究——以ICT产业为例[J]. 软科学,2018,32(6):39-44.
[18] Guan J C,Zuo K R,Chen K H,et al.Does country-level R&D efficiency benefit from the collaboration network structure?[J]. Research Policy,2016,45(4):770-784.
[19] 刘承良,管明明,段德忠. 中国城际技术转移网络的空间格局及影响因素[J]. 地理学报,2018,73(8):1462-1477.
[20] 王崇锋. 知识溢出对区域创新效率的调节机制[J]. 中国人口·资源与环境,2015,25(7):77-83.
[21] Adam B Jaffe.Real effects of academic research[J]. The American Economic Review,1989,79(5):957-970.
[22] Ponds R,Oort F V,Frenken K.Innovation,spillovers and university-industry collaboration:An extended knowledge production function approach[J]. Journal of Economic Geography,2010,10(2):231-255.
[23] 李金滟,李泽宇,李超. 城市绿色创新效率实证研究——来自长江中游城市群的证据[J]. 江西财经大学学报,2016(6):3-16.
[24] 王海龙,连晓宇,林德明. 绿色技术创新效率对区域绿色增长绩效的影响实证分析[J]. 科学学与科学技术管理,2016,37(6):80-87.
[25] 林诗琦. 中国绿色协同创新网络时空格局及影响因素分析[D]. 上海:华东师范大学,2020.
[26] 董直庆,王辉. 环境规制的“本地—邻地”绿色技术进步效应[J]. 中国工业经济,2019,37(1):100-118.
[27] 张涛,武金爽. 中国文化产业绿色发展效率的空间网络结构及影响机理研究[J]. 地理科学,2021,41(4):580-587.
[28] 钱肖颖,孙斌栋. 基于城际创业投资联系的中国城市网络结构和组织模式[J]. 地理研究,2021,40(2):419-430.
[29] 刘华军,刘传明,孙亚男. 中国能源消费的空间关联网络结构特征及其效应研究[J]. 中国工业经济,2015(5):83-95.
[30] 刘军. 整体网分析:UCINET软件实用指南[M]. 上海:上海人民出版社,2014.
[31] 马述忠,任婉婉,吴国杰. 一国农产品贸易网络特征及其对全球价值链分工的影响——基于社会网络分析视角[J].管理世界,2016,32(3):60-72.
[32] Doreian P,Conti N.Social context,spatial structure and social network structure[J]. Social Networks,2012,34(1):32-46.
[33] Valverde S,Cancho R F,Solé R V.Scale-free networks from optimal design[J]. Europhys Lett,2002,60(4):512-517.
[34] Watts D J,Strogatz S H.Collective dynamics of ‘small-world' networks[J]. Nature,1998,393(6684):440-442.
[35] Stan Wasserman,Katherine Faust.Social Network Analysis:Methods and Applications[C]//Structural Analysis in the Social Sciences). New York:Cambridge University Press,1994.
[36] 袁红林,辛娜. 中国高端制造业的全球贸易网络格局及其影响因素分析[J]. 经济地理,2019,39(6):108-117.
[37] 黄晓东,马海涛,苗长虹. 基于创新企业的中国城市网络联系特征[J]. 地理学报,2021,76(4):835-852.