农牧企业作为农牧业空间的载体和市场主体,其区位特征与影响因素识别对优化高原农牧业布局、保护生态安全具有重要意义。基于2011、2021年的农牧企业数据,采用核密度估计与空间自相关分析青海、西藏的农牧企业空间格局演变,引入逐步回归模型从市域和县域尺度探究其影响因素。研究发现:①青藏农牧企业2011—2021年迅速增长,始终呈集聚分布态势,集中于西藏“一江两河”和青海“湟水谷地”“黄河谷地”地区。②2011、2021年青藏农牧企业均有显著的空间集聚性和依赖性。时序演变上,青藏农牧企业的空间集聚程度和依赖性减弱,呈现空间扩散趋势。③青藏农牧企业分布影响因子的作用强度因尺度而异,市域尺度上人口密度对其分布有显著正向影响;县域尺度上第一产业增加值、在校中学生数、人口密度、路网密度、高程、区域GDP等6个因素均呈现正向作用。④采用地理加权回归分析农牧企业分布影响因素在县域尺度空间作用差异,发现路网密度和在校中学生数对全部县域农牧企业分布均呈正向影响,而高程均呈负向影响;人口密度的影响在青海中东部县不明显甚至呈现负向,在西藏及青海中西部县呈正向,尤以西藏东南及西北部正向作用显著。
As the carrier and market subject of the agricultural and animal husbandry industry,the identification of the location and influencing factors of agriculture and animal husbandry enterprises is of great significance to optimize the regional industrial spatial layout and rationally allocate resources. Based on the data of agricultural and animal husbandry enterprises in 2011 and 2021,this article analyzes the spatial evolution of agricultural and animal husbandry enterprises in Qinghai and Tibet by using the kernel density and the spatial autocorrelation,and uses the stepwise regression model to explore its influencing factors at the municipal and county levels. The findings are as follows: 1) Agriculture and animal husbandry enterprises in Qinghai-Tibet grew rapidly from 2011 to 2021,and they were always in the form of agglomeration,concentrated in the areas of "the Yarlung Zangbo River,the Lasa River and the Nianchu River" in Tibet and "Huangshui Valley" "Yellow River Valley" in Qinghai. 2) In 2011 and 2021,the agriculture and animal husbandry enterprises have significant spatial agglomeration and dependence. From the perspective of time sequence evolution,the degree of spatial agglomeration and dependence of agriculture and animal husbandry enterprises weakened and showed a trend of diffusion layout. 3) Under the control of other variables,the population density at the municipal level has a significant positive impact on the distribution of agricultural and animal husbandry enterprises,it has a significant positive impact on the influencing factors which are the added value of the primary industry,the number of middle school students,population density,road network density,elevation and regional GDP at the county level. 4) Four influencing factors,namely road network density,students in middle schools,population density and elevation,are selected from the influencing factors of the distribution of agricultural and animal husbandry enterprises at the county level for GWR regression analysis. The results show that the road network density and students in middle schools have positive effect on the distribution of agricultural and animal husbandry enterprises in all counties,while the elevation has a negative effect. The influence of population density is not obvious or even negative in the central and eastern counties of Qinghai,but positive in Tibet and the central and western counties of Qinghai.
[1] 宋飏,王婷婷,张瑜,等. 东北三省企业空间格局演化与区位选择因素[J]. 地理科学,2021,41(7):1199-1209.
[2] 陈凡,郭剑,栗欣如,等. 农业产业化经营项目空间分布及驱动因素分析[J]. 自然资源学报,2021,36(2):513-524.
[3] 刘玉洁,吕硕,陈洁,等. 青藏高原农业现代化时空分异及其驱动机制[J]. 地理学报,2022,77(1):214-227.
[4] Cantwell J.Location and the multinational enterprise[J]. Journal of International Business Studies,2009,40(1):35-41.
[5] 肖人荣,赵鹏军,戚禹林,等. 农产品地理标志品牌的空间异质性特征及其影响因素研究[J]. 农业现代化研究,2021,42(6):1126-1136.
[6] 马仁锋,候勃,陈鹏,等. 浙江海洋企业时空集聚区位特征研究[J]. 浙江大学学报:理学版,2018,45(5):617-624.
[7] 湛东升,章倩芸,张文忠,等. 杭州市房地产企业空间集聚特征与区位选择[J]. 地理科学进展,2021,40(5):736-745.
[8] Wang Y,Duan X,Wang L.Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution:Case study in Jiangsu Province[J]. Science of the Total Environment,2020,710:134953.
[9] 马仁锋,李秋秋,窦思敏,等. 区域与城市产业研究热点、方法与数据挑战[J]. 智库理论与实践,2022,7(2):154-164
[10] 吴丹丹,马仁锋,张悦,等. 杭州文化创意产业集聚特征与时空格局演变[J]. 经济地理,2018,38(10):127-135.
[11] 李刚,李双元,史琛. 青海省农牧业循环经济发展水平评价及贡献因子分析[J]. 生态经济,2020,36(4):116-121.
[12] 聂倩文,何理,殷闯,等. 青藏高原农牧业生态风险时空变化特征与分区防控[J]. 自然资源学报,2022,37(1):250-262.
[13] 李军,潘丽莎. 乡村振兴背景下畜牧业高质量发展面临的主要矛盾与破解路径[J]. 经济纵横,2022(8):58-64.
[14] 蒋辉,刘兆阳. 中国农业产业化龙头企业空间分布特征及其影响因素[J]. 吉首大学学报:社会科学版,2020,41(6):94-101.
[15] 赵权威,王玉华. 功能区位联系下中国有机畜牧业企业空间格局及其影响因素[J]. 热带地理,2022,42(6):878-888.
[16] 黄红球. 农业产业化经营评价指标体系设置及评价方法研究:基于广东省的证据[J]. 农业技术经济,2013(7):110-117.
[17] 郭斌. 农业企业“公司+农户”的生产经营模式创新[J]. 西北农林科技大学学报:社会科学版,2014,14(6):76-82.
[18] Zalizko V D,Fedun I L,Martynenkov V I.Representative model of economic development for an agricultural enterprise in the context of socioeconomic rural space formation[J]. Montenegrin Journal of Economics,2017,13(3):53-62.
[19] Semko I A,Altukhova L A,Levushkina S V,et al.Mechanism for ensuring competitiveness of agricultural enterprises[J]. Research Journal of Pharmaceutical,Biological and Chemical Sciences,2018,9(4):1110-1121.
[20] 杨勇. 农业产业化背景下龙头企业的引领作用及实现路径[J]. 农业经济,2021(8):41-43.
[21] Płaziak M,Szymańska A I.Role of modern factors in the process of choosing a location of an enterprise[J]. Procedia-Social and Behavioral Sciences,2014,120:72-83.
[22] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 中华人民共和国国家标准 GB/T 4754—2017:国民经济行业分类[M]. 北京:中国标准出版社,2017.
[23] 刘丽东,张文忠,马仁锋,等. 青藏高原农牧企业十年时空变化分析数据集(2011-2021)[DB/OL]. 全球变化数据仓储电子杂志(中英文),2022,https://doi.org/10.3974/geodb.2022.07.08.V1.
[24] 任频频,李保国,黄峰. 农作物种植结构演变下的黄淮海旱作区小麦玉米生产时空格局[J]. 资源科学,2022,44(3):436-449.
[25] 刘立祥. 线性回归模型中自变量的选择与逐步回归方法[J]. 统计与决策,2015(21):80-82.
[26] 游士兵,严研. 逐步回归分析法及其应用[J]. 统计与决策,2017(14):31-35.
[27] 梁涵. 江西省农业区位优势的空间分异及形成机制研究[J]. 中国农业资源与区划,2021,42(1):178-185.
[28] 李媛媛,李锋,陈春. 青藏高原地区农村居民点空间演化特征及驱动力研究[J]. 农业现代化研究,2021,42(6):1114-1125.
[29] 郑光辉,蒋涤非,栾永飞,等. 乡村振兴背景下的贵州农业产业空间分异[J]. 山地学报,2021,39(3):429-438.
[30] 盛雨婷,马仁锋,李佳洺,等. 西藏天然饮用水企业的布局及其效应[J]. 科技促进发展,2022,18(5):608-619.
[31] 陈佳锐,马仁锋,李佳洺,等. 高原地区生产性服务业空间集聚及其产业关联研究[J]. 科技促进发展,2022,18(5):589-598.
[32] 秦佳睿,盛业华,王燕锋,等. 南京市住宅价格影响因素分析[J]. 地球信息科学学报,2021,23(5):882-890.
[33] 李双元. 青藏高原特色农业国际竞争力评价指标体系的构建[J]. 青海民族研究,2009,20(3):40-45.
[34] 王海兵. 市场、商号与口岸:近代青藏高原东缘麝香的贸易流通[J]. 思想战线,2022,48(1):42-51.