MAUP效应下的上海城市功能区空间分布标度律
胡晨晖(2000—),男,硕士研究生,研究方向为区域发展与城市地理。E-mail:hch2268@163.com |
收稿日期: 2024-07-01
修回日期: 2024-09-30
网络出版日期: 2025-08-28
基金资助
国家自然科学基金项目(41871137)
国家自然科学基金项目(42271235)
江苏高校“青蓝工程”
Scaling Law of Spatial Distribution of Urban Functional Zones in Shanghai under the Effect of MAUP
Received date: 2024-07-01
Revised date: 2024-09-30
Online published: 2025-08-28
城市的标度律指示城市要素与人口规模之间的缩放关系。文章借助上海POI数据探究不同尺度下城市功能区空间分布与人口规模之间的标度关系,印证城市内部同样存在标度律,并且受到可塑性面积单元问题(MAUP)的制约。 结果表明:①栅格单元下的上海城市功能区空间分布标度律相较行政区划单元更为显著,并且伴随空间尺度的增大而趋于优化。②行政区划下的上海城市功能区空间分布标度律为次线性模式,而栅格单元下则为线性模式。不同城市功能区之间的标度律也存在差异,其中餐饮、购物、居住区为超线性模式,工作、教育区为线性模式,交通区为次线性模式。③上海城市功能区的效能整体较高,包括主城区在内的大部分区域优于预期,同时不同城市功能区的效能存在差异。
胡晨晖 , 靳诚 . MAUP效应下的上海城市功能区空间分布标度律[J]. 经济地理, 2025 , 45(7) : 108 -117 . DOI: 10.15957/j.cnki.jjdl.2025.07.011
Urban scaling law reveals the scaling relationship between urban indicators and population size. This paper explores the scaling relationship between the spatial distribution of urban functional zones and population size at different scales with the help of POI data in Shanghai. This paper confirms that the scaling law also exists within the city and is affected by the Modifiable Areal Unit Problem (MAUP for short). The results show that: 1) The scaling law of the spatial distribution of urban functional zones in Shanghai under raster partitioning is more significant than that of administrative partitioning, and tends to be optimized as the spatial scale increases. 2) The spatial distribution of urban functional zones in Shanghai is with sub-linear scaling under administrative partitioning, while it is with linear scaling under raster partitioning. There are also differences in the scaling laws between different urban functional zones. Restaurant functioncal zone, commercial functioncal zone and residential functioncal zone are with super-linear scaling, workplace functioncal zone and education functioncal zone are with linear scaling, traffic functioncal zone is with sub-linear scaling. 3) The overall efficiency of urban functional zones in Shanghai is high, and most regions, including the main urban area, are generally better than expected, while there are differences in the efficiency of different urban functional zones.
表1 基于POI数据的城市功能分类及统计Tab.1 Classification and statistics of urban functions based on the POI data |
城市功能 | POI二级分类 | POI数量(个) |
---|---|---|
餐饮 | 餐饮相关场所、茶艺馆、糕饼店、咖啡厅、快餐厅、冷饮店、甜品店、外国餐厅、休闲餐饮场所、中餐厅 | 83122 |
购物 | 便民商店/便利店、超级市场、服装鞋帽皮具店、个人用品/化妆品店、购物相关场所、花鸟鱼虫市场、家电电子卖场、家居建材市场、商场、特色商业街、特殊买卖场所、体育用品店、文化用品店、专卖店、综合市场 | 153561 |
居住 | 住宅区 | 23244 |
工作 | 产业园区、工厂、公司、公司企业、楼宇、农林牧渔基地、知名企业 | 104613 |
教育 | 博物馆、传媒机构、档案馆、会展中心、驾校、科技馆、科教文化场所、科研机构、美术馆、培训机构、图书馆、文化宫、文艺团体、学校、展览馆 | 25106 |
交通 | 地铁站、公交车站、交通服务相关、轮渡站、停车场 | 51106 |
表2 行政划分下不同类别POI空间分布标度律Tab.2 Scaling law for the spatial distribution of different categories of POI under administrative partitioning |
拟合参数 | 划分单元 | 餐饮 | 购物 | 居住 | 工作 | 教育 | 交通 |
---|---|---|---|---|---|---|---|
R² | 街道 | 0.6883 | 0.7818 | 0.4744 | 0.6280 | 0.6270 | 0.7857 |
市辖区 | 0.5344 | 0.7059 | 0.3875 | 0.5740 | 0.5299 | 0.6671 | |
β | 街道 | 0.9835 | 1.1256 | 1.0282 | 0.8487 | 0.9737 | 0.8572 |
市辖区 | 0.5372 | 0.5818 | 1.1121 | 0.8265 | 0.7477 | 0.5422 |
表3 栅格划分下不同类别POI空间分布标度律Tab.3 Scaling law for the spatial distribution of different categories of POI under raster partitioning |
拟合参数 | 带宽 | 餐饮 | 购物 | 居住 | 工作 | 教育 | 交通 |
---|---|---|---|---|---|---|---|
R² | 1 km | 0.4465 | 0.5546 | 0.4502 | 0.3603 | 0.4352 | 0.5745 |
5 km | 0.8048 | 0.8169 | 0.7884 | 0.8074 | 0.7935 | 0.8332 | |
10 km | 0.8902 | 0.8917 | 0.7988 | 0.9356 | 0.8556 | 0.8994 | |
15 km | 0.9243 | 0.9263 | 0.8215 | 0.9388 | 0.9063 | 0.9464 | |
20 km | 0.9449 | 0.9173 | 0.8479 | 0.9505 | 0.9114 | 0.9385 | |
β | 1 km | 0.7801 | 0.9073 | 0.5937 | 0.5553 | 0.5938 | 0.6032 |
5 km | 1.1740 | 1.1551 | 1.1264 | 1.0162 | 1.0249 | 0.8845 | |
10 km | 1.1252 | 1.0738 | 1.2266 | 1.0529 | 1.0340 | 0.9074 | |
15 km | 1.0863 | 1.1030 | 1.1855 | 1.0367 | 0.9676 | 0.8728 | |
20 km | 1.1192 | 1.1315 | 1.2501 | 1.0330 | 0.9602 | 0.9113 |
[1] |
|
[2] |
龚健雅, 许刚, 焦利民, 等. 城市标度律及应用[J]. 地理学报, 2021, 76(2):251-260.
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
徐智邦, 焦利民, 贾琦琪, 等. 标度律视角的城市效能测度及中国城市多维要素效能分析[J]. 地理研究, 2021, 40(6):1596-1609.
|
[11] |
许刚, 焦利民, 李新虎, 等. COVID-19病例与城市人口规模的标度律及其时间演化[J]. 地理学报, 2023, 78(2):503-514.
|
[12] |
|
[13] |
|
[14] |
陈江平, 张瑶, 余远剑. 空间自相关的可塑性面积单元问题效应[J]. 地理学报, 2011, 66(12):1597-1606.
|
[15] |
齐丽丽, 柏延臣. 社会经济统计数据热点探测的MAUP效应[J]. 地理学报, 2012, 67(10):1317-1326.
|
[16] |
孟斌, 王劲峰. 地理数据尺度转换方法研究进展[J]. 地理学报, 2005, 60(2):277-288.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
董磊, 王浩, 赵红蕊. 城市范围界定与标度律[J]. 地理学报, 2017, 72(2):213-223.
|
[21] |
|
[22] |
|
[23] |
杨振山, 苏锦华, 杨航, 等. 基于多源数据的城市功能区精细化研究——以北京为例[J]. 地理研究, 2021, 40(2):477-494.
|
[24] |
邹利林. 生活便利性视角下城市不同功能区居住适宜性评价——以泉州市中心城区为例[J]. 经济地理, 2016, 36(5):85-91.
|
[25] |
吕永强, 郑新奇, 周麟. 路网中心性与城市功能用地空间分布相关性研究——以北京城市中心区为例[J]. 地理研究, 2017, 36(7):1353-1363.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
高原, 王洁, 李钢, 等. 城市用地功能精细化识别方法:时序动态图嵌入深度学习模型[J]. 地球信息科学学报, 2022, 24(10):1968-1981.
|
[30] |
薛冰, 赵冰玉, 肖骁, 等. 基于POI大数据的资源型城市功能区识别方法与实证——以辽宁省本溪市为例[J]. 人文地理, 2020, 35(4):81-90.
|
[31] |
沈思矣, 顾高翔, 张颖, 等. 基于兴趣点的上海五个新城设施空间结构研究[J]. 地理科学, 2024, 44(5):843-852.
|
[32] |
刘贤腾, 顾朝林. 解析城市用地空间结构:基于南京市的实证[J]. 城市规划学刊, 2008(5):78-84.
|
[33] |
|
[34] |
焦利民, 雷玮倩, 许刚, 等. 中国城市标度律及标度因子时空特征[J]. 地理学报, 2020, 75(12):2744-2758.
|
[35] |
李爽, 张晓虹. 1843—2020年上海城市扩张时空过程及机理分析[J]. 地理学报, 2024, 79(5):1286-1302.
|
[36] |
|
[37] |
|
[38] |
|
[39] |
张可云, 戴美卉, 王洋志. 中国城市型政区调整与城市化的适应性分析[J]. 地理学报, 2023, 78(12):3129-3143.
|
[40] |
陈佑淋, 余珮珩, 王磊, 等. 区界重组对城市形态多中心与区域均衡发展的影响[J]. 地理科学进展, 2023, 42(11):2084-2098.
|
[41] |
柴彦威, 沈洁. 基于居民移动—活动行为的城市空间研究[J]. 人文地理, 2006(5):108-112,54.
|
[42] |
张红, 蓝天, 李志林. 分形城市研究进展:从几何形态到网络关联[J]. 地球信息科学学报, 2020, 22(4):827-841.
|
[43] |
高凌, 姚士谋, 李昌峰. 中国省会城市功能的定位方法——以沈阳为例[J]. 经济地理, 2007, 27(6):913-917,926.
|
/
〈 |
|
〉 |