上海市住宿接待业的空间格局差异及影响因素——基于传统酒店与共享住宿(Airbnb)的比较分析
赵海溶(1991—),女,江苏淮安人,博士研究生,研究方向为旅游地理学。E-mail:zhaohairong1991@126.com |
收稿日期: 2021-03-12
修回日期: 2021-08-15
网络出版日期: 2025-04-03
基金资助
国家自然科学基金重点项目(41930644)
Spatial Pattern Difference and Influencing Factors of Hospitality Industry in Shanghai:A Comparative Analysis Based on Traditional Hotels and Shared Accommodations (Airbnb)
Received date: 2021-03-12
Revised date: 2021-08-15
Online published: 2025-04-03
文章采用核密度估计、空间自相关和全子集回归分析等方法,探析上海市共享住宿(Airbnb)和传统酒店的空间分布特征、分布差异以及影响因素。研究发现:①上海市Airbnb和传统酒店在空间上呈现集聚分布态势,符合地理学第一定律,且存在明显的城市中心指向性。Airbnb空间分布具有单核心特征,而传统酒店空间分布具有多核心的特点。②Airbnb与五星级酒店存在空间相似性,三星级酒店与经济型连锁酒店分布具有空间一致性。③上海市Airbnb在地理空间上对传统酒店具有依赖性,倾向于分布在已有传统酒店住宿业周边,表明传统住宿业空间格局对Airbnb空间分布存在一定影响。④上海市Airbnb和传统酒店空间格局的影响因素主要有交通通达性因素和商业环境因素,旅游因素对Airbnb空间分布的影响不显著。文章对城市住宿业空间结构的调整和优化提供了理论基础和科学依据,并为疫情后住宿业尤其是共享住宿业的空间布局提供参考。
赵海溶 , 陆林 . 上海市住宿接待业的空间格局差异及影响因素——基于传统酒店与共享住宿(Airbnb)的比较分析[J]. 经济地理, 2021 , 41(11) : 232 -240 . DOI: 10.15957/j.cnki.jjdl.2021.11.026
This study used Kernel density analysis,spatial autocorrelation and regression analysis to explore the spatial distribution characteristics,spatial differentiation and influencing factors of Airbnb and traditional hotels in Shanghai. The results show that: 1) Both the Airbnb and the traditional hotels in Shanghai present obvious spatial agglomeration distribution,which follows the First Law of Geography and have obvious urban-centered characteristic. Airbnb shows the single-core characteristic,while traditional hotel has the multi-core characteristic; 2) Airbnb has spatial similarity with five-star hotels,while three-star hotels have spatial consistency with budget chain hotels; 3) Airbnb in Shanghai relies on traditional hotels in spatial distribution and tends to be distributed around traditional hotel,indicating that the spatial pattern of the traditional accommodation industry has a certain influence on the spatial distribution of Airbnb. 4) The factors influencing the distribution pattern mainly include: traffic access and business environment,but there is difference in the correlation between these factors of Airbnb and traditional hotels,and tourism factors have no significant influence on the spatial distribution of Airbnb. This study provides the theoretical and scientific basis for urban tourism space optimization. Moreover, this research builds up a reference for the spatial layout of the accommodation industry,especially the Shared accommodations after the epidemic.
表1 上海市Airbnb、星级酒店和经济型连锁酒店空间分布特征Tab.1 Spatial distribution characteristics of Airbnb,star hotels and budget chain hotels in Shanghai |
空间分布范围 | 空间分布特点 | |
---|---|---|
Airbnb | 以上海市中心城区(外环线以内)为主 | 具有明显的分布密集区域,呈团块状分布 |
星级酒店 | 集中在上海市中心城区(外环线以内)、浦东新区以及青浦区、松江区和闵行区交界处 | 斑块状分布和多核心分布特征 |
经济型连锁酒店 | 范围较广,各区均有分布 | 呈现片状分布和多核心分布特点 |
表2 全局自相关分析Tab.2 Global autocorrelation analysis |
Airbnb | 星级酒店 | 经济型连锁酒店 | |
---|---|---|---|
全局自相关指数(Moran's I) | 0.437 | 0.371 | 0.302 |
Z-value | 12.302 | 8.627 | 10.605 |
表3 住宿业空间格局解释变量及说明Tab.3 Variables and explanation for location of accommodation industry |
影响因素 | 变量 | 变量释义 |
---|---|---|
旅游因素 | 旅游景点 | 1 km范围内旅游景点数量 |
交通通达性 | 道路密度 | 2 km半径内的道路密度 |
地铁 | 1 km范围内地铁站数量 | |
商业环境 | 商业中心 | 1 km范围内商业中心数量 |
酒店 | 1 km范围内酒店数量 | |
写字楼 | 1 km范围内写字楼数量 | |
企业公司 | 1 km范围内企业公司数量 | |
居民区 | 1 km范围内居民区数量 | |
商场超市 | 1 km范围内商场超市数量 |
表4 全子集回归分析结果Tab.4 Results of full subset regression analysis |
解释变量 | VIF | 系数 | P | |
---|---|---|---|---|
Airbnb | 企业公司数量 | 8.55 | 6.85 | <0.001 |
道路密度 | 4.94 | -7.15 | <0.001 | |
酒店数量 | 1.49 | 18.26 | <0.001 | |
调整后的R2 | 0.88 | |||
传统酒店 | 企业公司数量 | 4.01 | 6.25 | <0.01 |
道路密度 | 1.56 | 0.54 | <0.01 | |
商业中心数量 | 3.45 | 0.62 | <0.001 | |
旅游景点数量 | 4.52 | 2.99 | <0.001 | |
居民区数量 | 4.67 | -0.96 | <0.001 | |
调整后的R2 | 0.63 |
[1] |
马跃如, 余航海. “互联网+”背景下社群旅游的兴起、特征与商业模式构建[J]. 经济地理, 2018, 38(4):193-199.
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
王朝辉, 陆林, 方婷, 等. 世博建设期上海市旅游住宿产业空间格局演化[J]. 地理学报, 2012, 67(10):129-143.
|
[12] |
闫丽英, 李伟, 杨成凤, 等. 北京市住宿业空间结构时空演化及影响因素[J]. 地理科学进展, 2014, 33(3):432-440.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
闫丽英, 韩会然, 陈婉婧, 等. 北京市住宿业空间分布格局及影响因素研究[J]. 经济地理, 2014, 34(1):94-101.
|
[41] |
梅林, 韩蕾. 中国星级酒店空间分布与影响因子分析[J]. 经济地理, 2011, 31(9):1580-1584.
|
[42] |
赵艳楠, 杨德刚, 张新焕, 等. 乌鲁木齐住宿业空间分布及热点区模式研究[J]. 干旱区地理, 2016, 39(5):1143-1152.
|
[43] |
姜丽媛, 何珍. 旅游危机对旅游行业的影响及应对策略研究——以新冠肺炎疫情为例[J]. 农村经济与科技, 2020, 31(19):107-108.
|
[44] |
|
[45] |
王法辉. 基于GIS 的数量方法与应用[M]. 北京: 商务印书馆, 2011.
|
[46] |
|
[47] |
王承云, 孙飞翔. 长三角城市创新空间的集聚与溢出效应[J]. 地理研究, 2017, 36(6):1042-1052.
|
[48] |
李慧, 王云鹏, 李岩, 等. 珠江三角洲土地利用变化空间自相关分析[J]. 生态环境学报, 2011, 20(12):1879-1885.
|
[49] |
吴晓隽, 裘佳璐. Airbnb房源价格影响因素研究——基于中国36个城市的数据[J]. 旅游学刊, 2019, 34(4):13-28.
|
[50] |
刘雪春, 张志斌, 张翠翠, 等. 兰州市主城区酒店空间分布格局及影响因素[J]. 兰州大学学报:自然科学版, 2017, 53(2):199-205.
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
/
〈 |
|
〉 |