Taking 214 districts and counties in the Qinghai-Xizang Plateau from 2011 to 2023 as the research object, this article uses the methods of GIS spatio-temporal analysis, Dagum Gini coefficient, and spatio-temporal geographical weighted regression model (GTWR) to depict the spatio-temporal changes and spatial non-equilibrium of vegetation index in the Qinghai-Xizang Plateau, and explore the influencing factors of the vegetation index in the Qinghai-Xizang Plateau. It’s found that: 1) In terms of temporal evolution, the vegetation index on the Qinghai-Xizang Plateau showed an upward trend during the research period, and the vegetation indices increased in all provincial-level regions. The vegetation index in Yunnan, Sichuan, and Gansu was higher than the average, while the vegetation index in Qinghai, Xizang, and Xinjiang was lower than the average. 2) In terms of spatial distribution, the vegetation index in the Qinghai-Xizang Plateau showed a gradient decrease from the west of the Qinghai-Xizang Plateau to the east of the Qinghai-Xizang Plateau. The low-low agglomeration of the vegetation index in the Qinghai-Xizang Plateau was distributed in the northwest of the Qinghai-Xizang Plateau, and the high-high agglomeration was mainly distributed in the southeast of the Qinghai-Xizang Plateau. The intra-regional imbalance of the vegetation index in the Qinghai-Xizang Plateau was stable and had spatial differentiation characteristics. The degree of intra-regional differentiation in Xizang showed an expanding trend. Inter-regional differences were the main source of the spatial differentiation of the vegetation index in the Qinghai-Xizang Plateau, followed by intra-regional differences, and the contribution rate of the hypervariable density spatial differentiation was the smallest. 3) In terms of influencing factors, meteorological factors such as temperature, precipitation, and sunshine duration, as well as the actual evaporation amount and slope, played a promoting role in the vegetation index in the Qinghai-Xizang Plateau. However, elevation, soil root moisture, and population density had an inhibitory effect on the vegetation index in the Qinghai-Xizang Plateau.
[1] 李焱,巩杰,戴睿,等. 藏西南高原植被覆盖时空变化及其与气候因素和人类活动的关系[J]. 地理科学,2022,42(5):761-771.
[2] Hua T,Wang X,Ci Z,et al.Responses of vegetation activity to climate variation on the Qinghai-Tibetan Plateau (China) from 1982 to 2011[J]. Climate Research,2015,66(1):65-73.
[3] Wang S,Wei Y.Qinghai-Tibetan Plateau greening and human well-being improving:The role of ecological policies[J]. Sustainability,2022,14(3):1652.
[4] Zhu Y,Zhang H,Ding M,et al.The multiple perspective response of vegetation to drought on the Qinghai-Tibetan Plateau[J]. Remote Sensing,2023,15(4):902.
[5] Shen Y,Liu G,Wan L,et al.The role of protected areas in mitigating vegetation disturbances on the Qinghai-Tibetan Plateau[J]. Ecosystem Health and Sustainability,2023,9:0066.
[6] 魏彦强,芦海燕,王金牛,等. 近35年青藏高原植被带变化对气候变化及人类活动的响应[J]. 草业科学,2019,36(4):1163-1176,927.
[7] 马超,崔培培,钟广睿,等. 气候变化和工程活动对青藏铁路沿线植被指数时空变化的影响[J]. 地理研究,2021,40(1):35-51.
[8] 李红英,张存桂,汪生珍,等. 近40年青藏高原植被动态变化对水热条件的响应[J]. 生态学报,2022,42(12):4770-4783.
[9] 卓嘎,陈思蓉,周兵. 青藏高原植被覆盖时空变化及其对气候因子的响应[J]. 生态学报,2018,38(9):3208-3218.
[10] 杨亮,刘丽男,孙少波. 1982—2015年青藏高原植被变化的主导环境因子[J]. 生态学报,2023,43(2):744-755.
[11] 欧阳习军,董晓华,魏榕,等. 青藏高原植被生长季NDVI时空变化及对气候因子的响应分析[J]. 水土保持研究,2023,30(2):220-229.
[12] 王春雅,王金牛,崔霞,等. 藏东南三江并流核心区植被时空动态变化及其气候驱动力分析[J]. 地理研究,2021,40(11):3191-3207.
[13] 郭建晓,桑会勇,翟亮. 青藏高原植被覆盖度时空变化特征及其驱动因素[J]. 生态学杂志,2023,42(11):2665-2674.
[14] 周玉科. 青藏高原植被NDVI对气候因子响应的格兰杰效应分析[J]. 地理科学进展,2019,38(5):718-730.
[15] 孔冬冬,张强,黄文琳,等. 1982—2013年青藏高原植被物候变化及气象因素影响[J]. 地理学报,2017,72(1):39-52.
[16] 陈舒婷,郭兵,杨飞,等. 2000—2015年青藏高原植被NPP时空变化格局及其对气候变化的响应[J]. 自然资源学报,2020,35(10):2511-2527.
[17] 缪利,陆晴,刘根林,等. 1999—2019年青藏高原不同植被类型NDVI时空演变特征及其对气候因子的响应[J]. 水土保持研究,2023,30(1):97-105.
[18] 刘振元,张杰,陈立. 青藏高原植被指数最新变化特征及其与气候因子的关系[J]. 气候与环境研究,2017,22(3):289-300.
[19] 王涛,赵元真,王慧,等. 基于GIMMS NDVI的青藏高原植被指数时空变化及其气温降水响应[J]. 冰川冻土,2020,42(2):641-652.
[20] 王志鹏,张宪洲,何永涛,等. 2000—2015年青藏高原草地归一化植被指数对降水变化的响应[J]. 应用生态学报,2018,29(1):75-83.
[21] 郝爱华,薛娴,段翰晨,等. 青藏高原典型草地NDVI时空演变的季节差异及其气候驱动[J]. 生态学报,2023,43(1):352-363.
[22] 李依婵,李育,朱耿睿. 一种新的气候变化敏感区的定义方法与预估[J]. 地理学报,2018,73(7):1283-1295.
[23] 柴立夫,田莉,奥勇,等. 人类活动干扰对青藏高原植被覆盖变化的影响[J]. 水土保持研究,2021,28(6):382-388.
[24] 安敏,韦雅倩,何伟军,等. 气候变化和人类活动对中国生态敏感性的影响分析与改善路径——基于响应曲面法[J]. 中国人口·资源与环境,2024,34(5):69-79.
[25] 樊荣,徐含锋,李超,等. 亚热带林地恢复过程的植物多样性与水分利用效率变化[J]. 地理研究,2024,43(3):776-790.
[26] 彭文斌,谢晓琪,宁译萱,等. 数字湖南建设的空间非均衡特征及其影响因素[J]. 经济地理,2024,44(6):93-101.
[27] Dagum C.A new approach to the decomposition of the Gini income inequality ratio[J]. Empirical Economics,1997,22(4):515-531.
[28] 王兆峰,张先甜. 中国人—地—粮复合系统适配性评价及影响[J]. 地理学报,2024,79(3):779-799.
[29] 李焱,巩杰,戴睿,等. 藏西南高原植被覆盖时空变化及其与气候因素和人类活动的关系[J]. 地理科学,2022,42(5):761-771.
[30] 孙颖,易浪,尹少华. 洞庭湖流域植被覆盖变化及其协同治理[J]. 经济地理,2022,42(4):190-201.
[31] Cai S,Song X,Hu R,et al.Ecosystem-dependent responses of vegetation coverage on the Tibetan Plateau to climate factors and their lag periods[J]. ISPRS International Journa of Geo-Information,2021,10(6):394.
[32] Wang Y,Peng D,Shen M,et al.Contrasting effects of temperature and precipitation on vegetation greenness along elevation gradients of the Tibetan Plateau[J]. Remote Sensing,2020,12(17):2751.
[33] Li C,de Jong R,Schmid B,et al. Changes in grassland cover and in its spatial heterogeneity indicate degradation on the Qinghai-Tibetan Plateau[J]. Ecological Indicators,2020,119:106641.
[34] Mao X,Ren H-L,Liu G.Primary interannual variability patterns of the growing-season NDVI over the Tibetan Plateau and main climatic factors[J]. Remote Sensing,2022,14(20):5183.