城市地理与新型城镇化

中国五大城市群用地景观格局对碳排放绩效的影响

展开
  • 1.广州大学 建筑与城市规划学院,中国广东 广州 510006;
    2.四川大学 商学院,中国四川 成都 610065;
    3.中山大学 地理科学与规划学院/中国区域协调发展与乡村建设研究院,中国广东 广州 510275;
    4.广州大学 经济与统计学院,中国广东 广州 510006
李珊(1987—),女,博士,讲师,研究方向为产业升级与区域发展。E-mail:lishan@gzhu.edu.cn
※朱宁(1986—),男,博士,副教授,研究方向为效率和生产率分析。E-mail:znzy1986@163.com

收稿日期: 2022-09-13

  修回日期: 2023-02-10

  网络出版日期: 2024-03-29

基金资助

国家自然科学基金项目(42301182); 广东省基础与应用基础研究基金项目(2022A1515110331); 广东省哲学社会科学规划项目(GD23XGL076); 广州大学“2+5”学科与科研创新平台科研项目(PT252022023)

Impact of Land Use Landscape Pattern on Carbon Emission Performance in Five Major Urban Agglomerations in China

Expand
  • 1. College of Architecture and Urban Planning,Guangzhou University,Guangzhou 510006,Guangdong,China;
    2. Business School,Sichuan University,Chengdu 610065,Sichuan,China;
    3. School of Geography and Planning& China Regional Coordinated Development and Rural Construction Institute,Sun Yat-sen University,Guangzhou 510275,Guangdong,China; ;
    4. School of Economics and Statistics,Guangzhou University,Guangzhou 510006,Guangdong,China

Received date: 2022-09-13

  Revised date: 2023-02-10

  Online published: 2024-03-29

摘要

文章以中国五大城市群为案例,基于精细化的碳排放与用地景观栅格数据,利用非期望产出超效率SBM模型测算2005—2018年城市碳排放绩效,利用景观指数量化城市用地景观格局,再结合核密度估计和泰尔指数揭示城市群碳排放绩效与用地景观格局的演化规律,最后结合线性拟回归与Pearson相关性对城市群用地景观格局与碳排放绩效的关系进行分析。结果表明:①五大城市群碳排放绩效呈上升趋势但整体水平不高,在空间上呈现“东高西低”格局,城市群内碳排放绩效比城市群间差异更大。②研究期间五大城市群间及内部景观指数的差距逐渐缩小,其中城市扩张指标“景观总面积”呈上升趋势,表现为东部城市群高于中西部;形状复杂性指标“景观形状指数”与紧凑型指标“分离度指数”呈下降趋势,两者均表现为京津冀最高、珠三角最低。③城市群用地景观格局与碳排放绩效紧密相关且具有区域异质性。城市建设用地扩张在京津冀、长江中游、珠三角促进碳排放绩效提升;除了长江中游城市群,城市用地形状复杂度指数与紧凑度指数均抑制碳排放绩效。

本文引用格式

李珊, 温榕冰, 李建军, 杨豪, 陈婷婷, 朱宁 . 中国五大城市群用地景观格局对碳排放绩效的影响[J]. 经济地理, 2023 , 43(12) : 91 -102 . DOI: 10.15957/j.cnki.jjdl.2023.12.009

Abstract

Taking the five major urban agglomerations in China as a case study and based on the refined carbon emission and land use landscape raster data,this paper uses the super-efficiency SBM with undesirable output model to measure the urban CEP from 2005 to 2018,and uses the landscape index to quantify the urban land use landscape pattern,and then combines with the kernel density estimation and the Theil index to reveal the evolution of the urban agglomerations' CEP and the land use landscape pattern. It analyzes the relationship between urban land use landscape pattern and CEP by the means of the linear fitting regression and Pearson's correlation. The results show that: 1) The CEP of the five major urban agglomerations shows an upward trend,but its overall level is not high,it presents the spatial distribution pattern of "high in the east of China and low in the west of China", the CEP shows the bigger difference in the urban agglomerations than that among five urban agglomerations. 2) During the study period, the differences of landscape indices gradually narrow among and within the five major urban agglomerations. The total landscape area shows an upward trend,which is higher in the urban agglomerations of the eastern region than that in the central and western regions. The landscape shape index and the separation index both show an downward trend,which is the highest in Beijing-Tianjin-Hebei urban agglomeration and the lowest in the Pearl River Delta urban agglomeration. 3) The land use landscape pattern of urban agglomerations is closely related to the CEP and has regional heterogeneity. The expansion of urban construction land promotes the improvement of CEP in Beijing-Tianjin-Hebei urban agglomeration,the middle reaches of the Yangtze River urban agglomeration,and the Pearl River Delta (PRD) urban agglomeration. The complexity index and compactness index of the urban land use shape both inhibit the CEP except for the middle reaches of the Yangtze River urban agglomeration.

参考文献

[1] Wang S,Fang C,Guan X,et al.Urbanisation,energy consumption,and carbon dioxide emissions in China: A panel data analysis of China’s provinces[J]. Applied Energy,2014,136:738-749.
[2] Friedlingstein P,O'sullivan M,Jones M W,et al. Global carbon budget 2020[J]. EarthSystem ScienceData Discussions,2020:1-3.
[3] 王少剑,高爽,黄永源,等. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J]. 地理学报,2020,75(6):1316-1330.
[4] Yamaji K,Matsuhashi R,Nagata Y,et al.A study on economic measures for CO2 reduction in Japan[J]. Energy Policy,1993,21(2):123-132.
[5] Dong F,Yu B,Hadachin T,et al.Drivers of carbon emission intensity change in China[J]. Resources,Conservation and Recycling,2018,129:187-201.
[6] Wang S,Wang J,Fang C,et al.Estimating the impacts of urban form on CO2 emission efficiency in the Pearl River Delta,China[J]. Cities,2019,85:117-129.
[7] He J,Hu S.Ecological efficiency and its determining factors in an urban agglomeration in China:The Chengdu-Chongqing urban agglomeration[J]. Urban Climate,2022,41:101071.
[8] 刘杨,杨建梁,梁媛. 中国城市群绿色发展效率评价及均衡特征[J]. 经济地理,2019,39(2):110-117.
[9] Charnes A,Cooper W W,Rhodes E.Measuring the efficiency of decision making units[J]. European Journal of OperationalResearch,1978,2(6):429-444.
[10] Tone K.A slacks - based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research,2001,130(3):498-509.
[11] Hou D,Li G,Chen D,et al.Evaluation and analysis on the green development of China's industrial parks using the long - tail effect model[J]. Journal of Environmental Management,2019,248:109288.
[12] Fan F,Lian H,Liu X,et al.Can environmental regulation promote urban green innovation Efficiency? An empirical study based on Chinese cities[J]. Journal of Cleaner Production,2021,287:125060.
[13] Zhao P,Zeng L,Lu H,et al.Green economic efficiency and its influencing factors in China from 2008 to 2017:Based on the super-SBM model with undesirable outputs and spatial Dubin model[J]. Science of the Total Environment,2020,741:140026.
[14] 成刚. 数据包络分析方法与MaxDEA软件[M]. 北京:知识产权出版社,2014.
[15] Iftikhar Y,He W,Wang Z.Energy and CO2 emissions efficiency of major economies:A non-parametric analysis[J]. Journal of Cleaner Production,2016,139:779-787.
[16] Gudipudi R,Fluschnik T,Ros A G C,et al. City density and CO2 efficiency[J]. Energy Policy,2016,91:352-361.
[17] Tian Y,Zhou W.How do CO2 emissions and efficiencies vary in Chinese cities? Spatial variation and driving factors in 2007[J]. Science of the Total Environment,2019,675:439-452.
[18] Li J,Huang X,Kwan M P,et al.The effect of urbanization on carbon dioxide emissions efficiency in the Yangtze River Delta,China[J]. Journal of Cleaner Production,2018,188:38-48.
[19] Li S,Zhou C,Wang S,et al.Dose urban landscape pattern affect CO2 emission efficiency?Empirical evidence from megacities in China[J]. Journal of Cleaner Production,2018,203:164-178.
[20] Christen A,Coops N C,Crawford B R,et al.Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements[J]. Atmospheric Environment,2011,45(33):6057-6069.
[21] 何龙斌,曾辉. 城市形态的生态与环境效应[J]. 生态经济,2014,30(11):110-114.
[22] Peng J,Zheng Y,Liu C. The impact of urban construction land use change on carbon emissions:Evidence from the China land market in2000-2019[J]. Land,2022,https://doi.org/10.3390/land11091440.
[23] Gim T H T. Analyzing the city-level effects of land use on travel time and CO2 emissions:A global mediation study of travel time[J]. International Journal of Sustainable Transportation,2022,16(6):496-513.
[24] Xu C,Haase D,Su M,et al.The impact of urban compactness on energy-related greenhouse gas emissions across EU member states:Population density vs physical compactness[J]. Applied Energy,2019,https://doi.org/10.1016/j.apenergy.2019.113671.
[25] Tamura S,Iwamoto S,Tanaka T.The impact of spatial population distribution patterns on CO2 emissions and infrastructure costs in a small Japanese town[J]. Sustainable Cities and Society,2018,40:513-523.
[26] 张润森,濮励杰,文继群,等. 建设用地扩张与碳排放效应的库兹涅茨曲线假说及验证[J]. 自然资源学报,2012,27(5):723-733.
[27] Guha S,Govil H,Dey A,et al.A case study on the relationship between land surface temperature and land surface indices in Raipur City,India[J]. Geografisk Tidsskrift-Danish Journal of Geography,2020,120(1):35-50.
[28] Alphan H.Analysis of landscape changes as an indicator for environmental monitoring[J]. Environmental Monitoring and Assessment,2017,189(1):24.
[29] Qiu F,Chen Y,Tan J,et al.Spatial-temporal heterogeneity of green development efficiency and its influencing factors in growing metropolitan area:a case study for the Xuzhou metropolitan area[J]. Chinese Geographical Science,2020,30:352-365.
[30] 方创琳. 改革开放40年来中国城镇化与城市群取得的重要进展与展望[J]. 经济地理,2018,38(9):1-9.
[31] 方创琳. 中国城市群研究取得的重要进展与未来发展方向[J]. 地理学报,2014,69(8):1130-1144.
[32] 黄金川,陈守强. 中国城市群等级类型综合划分[J]. 地理科学进展,2015,34(3):290-301.
[33] 方创琳. 中国西部地区城市群形成发育现状与建设重点[J]. 干旱区地理,2010,33(5):667-675.
[34] 郭艺,曾刚,魏文栋,等. 区域一体化对资源型城市产业结构升级的影响[J]. 经济地理,2023,43(3):131-139.
[35] Wang T,Li H.Have regional coordinated development policies promoted urban carbon emission efficiency?—The evidence from the urban agglomerations in the middle reaches of the Yangtze River[J]. Environmental Science and Pollution Research,2023,30(14):39618-39636.
[36] Liu Y,Zhang X,Kong X,et al.Identifying the relationship between urban land expansion and human activities in the Yangtze River Economic Belt,China[J]. Applied Geography,2018,94:163-177.
[37] Ou J,Liu X,Li X,et al.Quantifying the relationship between urban forms and carbon emissions using panel data analysis[J]. Landscape Ecology,2013,28:1889-1907.
[38] 孙嘉麟,杨新海,吕飞. “双碳”目标下乡镇国土空间存在问题与优化路径[J]. 规划师,2022,38(1):41-48.
[39] Yu X,Wu Z,Zheng H,et al.How urban agglomeration improve the emission efficiency?A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China[J]. Journal of Environmental Management,2020,260:110061.
[40] Liu B,Tian C,Li Y,et al.Research on the effects of urbanization on carbon emissions efficiency of urban agglomerations in China[J]. Journal of Cleaner Production,2018,197:1374-1381.
[41] 苏泳娴,陈修治,叶玉瑶,等. 基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报,2013,68(11):1513-1526.
[42] Zhao M,Cheng W,Zhou C,et al.Spatial differentiation and morphologic characteristics of China’s urban core zones based on geomorphologic partition[J]. Journal of Applied Remote Sensing,2017,11(1):016041.
[43] 张赫,于丁一,王睿,等. 面向低碳生活的县域城镇空间结构优化研究[J]. 规划师,2020,36(24):12-20.
文章导航

/