产业经济与创新发展

我国制造业结对集聚水平测度及其特征——机器学习方法的改进与应用

展开
  • 中国人民大学 应用经济学院,中国 北京 100872
张可云(1964—),男,教授,博士生导师,研究方向为区域经济政策、区域经济合作与冲突、区域经济理论、行政区划等。E-mail:zkeyun@ruc.edu.cn

收稿日期: 2022-09-16

  修回日期: 2023-04-14

  网络出版日期: 2023-07-06

基金资助

国家自然科学基金青年项目(72003190); 国家自然科学基金面上项目(72073137)

Measurement and Characteristic of Manufacturing Co-agglomeration in China:Improvement and Application of Machine Learning

Expand
  • School of Applied Economics,Renmin University of China,Beijing 100872,China

Received date: 2022-09-16

  Revised date: 2023-04-14

  Online published: 2023-07-06

摘要

结对集聚是产业空间集聚的重要现象之一。文章应用并改进机器学习方法,测度了中国城市的制造业结对集聚指数,从时序变化、空间格局方面分析结对集聚特征。研究表明:①制造业结对集聚指数整体上呈现出“U”型分布特征。②2013年劳动与劳动、劳动与资本、劳动与技术密集型产业显著结对集聚组合明显上升。③中国四大区域板块中,技术密集型产业的结对集聚指数低于劳动、资本密集型产业。④2013年城市产业空间网络呈现出一定的“核心—边缘”特征。最后,提出了加强产业链的整体规划与布局、进一步提升制造业集聚水平、引导城市制造业差异化发展等政策建议。

本文引用格式

张可云, 仲艾芬 . 我国制造业结对集聚水平测度及其特征——机器学习方法的改进与应用[J]. 经济地理, 2023 , 43(4) : 124 -133 . DOI: 10.15957/j.cnki.jjdl.2023.04.013

Abstract

Co-agglomeration is an important feature of urban industrial spatial agglomeration. This article improves and applies machine learning methods to measure the manufacturing co-agglomeration index of 280 cities in China. The characteristic analysis shows that: 1) The manufacturing co-agglomeration exhibits a "U-shaped" distribution. 2) In 2013,there was a big increase of significant co-agglomeration combination of labor and labor,labor and capital,labor and technology intensive industries. 3) The co-agglomeration index of technology intensive industries in the four major sectors is lower than that of labor,capital intensive industries. 4) In 2013,the urban industrial spatial network showed a certain "core-edge" characteristic. Policy suggestions are put forward to strengthen the overall planning and layout of the industrial chain,further improve the level of manufacturing industry agglomeration,and guide the differentiated development of urban manufacturing industry.

参考文献

[1] 王一鸣. 百年大变局、高质量发展与构建新发展格局[J]. 管理世界,2020,36(12):1-13.
[2] 贺灿飞,胡绪千. 1978年改革开放以来中国工业地理格局演变[J]. 地理学报,2019,74(10):1962-1979.
[3] 陈建军,陈菁菁. 生产性服务业与制造业的协同定位研究——以浙江省69个城市和地区为例[J]. 中国工业经济,2011(6):141-150.
[4] 陈建军,刘月,邹苗苗. 产业协同集聚下的城市生产效率增进——基于融合创新与发展动力转换背景[J]. 浙江大学学报:人文社会科学版,2016,46(3):150-163.
[5] 江曼琦,席强敏. 生产性服务业与制造业的产业关联与协同集聚[J]. 南开学报:哲学社会科学版,2014(1):153-160.
[6] 陈国亮,陈建军. 产业关联、空间地理与二三产业共同集聚——来自中国212个城市的经验考察[J]. 管理世界,2012(4):82-100.
[7] 张可云,朱春筱. 中国工业结对集聚和空间关联性分析[J]. 地理学报,2021,76(4):1019-1033.
[8] 贺灿飞,肖晓俊. 产业集聚、产业共聚与中国制造业生产率[J]. 哈尔滨工业大学学报:社会科学版,2012,14(1):111-120.
[9] Porter M E.Clusters and the new economics of competition[J]. Harvard Business Review,1998,76(6):77.
[10] 国务院发展研究中心课题组. 产业集聚及其对经济发展的意义[J]. 经济学动态,2003(8):28-31.
[11] 沈鸿,向训勇. 专业化、相关多样化与企业成本加成——检验产业集聚外部性的一个新视角[J]. 经济学动态,2017(10):81-98.
[12] Combes P P,Overman H G.The spatial distribution of economic activities in the European Union[J]. Handbook of Regional and Urban Economics,2004,4(4):2845-2909.
[13] Ellison G,Glaeser E L.Geographic concentration in U.S. manufacturing industries:A dartboard approach[J]. Journal of Political Economy,1997,105(5):889-927.
[14] Duranton G,Overman H.Testing for localization using micro-geographic data[J].The Review of Economic Studies,2005,72:1077-1106.
[15] Duranton G,Overman H.Exploring the detailed location patterns of U.K. manufacturing industries using microgeographic data[J]. Journal of Regional Science,2008,48:213-243.
[16] Billings S B,Johnson E B.Agglomeration within an urban area[J]. Journal of Urban Economics,2016(91):13-25.
[17] 陈露,刘修岩,叶信岳,等. 城市群视角下的产业共聚与产业空间治理:机器学习算法的测度[J]. 中国工业经济,2020(5):99-117.
[18] 张虎,韩爱华,杨青龙. 中国制造业与生产性服务业协同集聚的空间效应分析[J]. 数量经济技术经济研究,2017,34(2):3-20.
[19] 陈晓峰,陈昭锋. 生产性服务业与制造业协同集聚的水平及效应——来自中国东部沿海地区的经验证据[J]. 财贸研究,2014,25(2):49-57.
[20] 黄宇金,盛科荣,孙威. 基于企业大数据的京津冀制造业集聚的影响因素[J]. 地理学报,2022,77(8):1953-1970.
[21] 戴璐,刘耀彬,黄开忠. 基于MCR模型和DO指数的九江滨水城市生态安全网络构建[J]. 地理学报,2020,75(11):2459-2474.
[22] 袁海红,张华,曾洪勇. 产业集聚的测度及其动态变化——基于北京企业微观数据的研究[J]. 中国工业经济,2014(9):38-50.
[23] Krugman P.Increasing returns and economic geography[J]. Journal of Political Economy,1991,99:483-499.
[24] Waltz U.Transport costs,intermediate good and localized growth[J]. Regional Science and Urban Economics,1996,26:71-95.
[25] Lanaspa L,Sanz-Gracia F,Vera-Cabello M.The (strong) interdependence between intermediate producer services' attributes and manufacturing location[J]. Economic Modelling,2016,57:1-12.
[26] Crafts N,Klein A.Spatial concentration of manufacturing industries in the United States:Re-examination of long-run trends[J]. European Review of Economic History,2021,25:223-246.
[27] Boschma R.Proximity and innovation:A critical assessment[J]. Regional Studies,2005,39:61-74.
[28] Fleming L.Recombinant uncertainty in technological space[J]. Management Science,2001,47:117-132.
[29] Bishop P,Gripaios P.Spatial externalities,relatedness,and sector employment growth in Great Britain[J]. Regional Studies,2010,44:443-454.
[30] Hartog M,Boschma R,Sotarauta M.The impact of related variety on regional employment growth in Finland 1993-2006:High-tech versus medium lowtech[J]. Industry and Innovation,2012,19:459-476.
[31] Panaretos V M,Zemel Y.Statistical aspects of Wasserstein distances[J]. Annual Review of Statistics and Its Application,2018,6(1):102-115.
[32] Qin C Z,Gao H,Zhu L.Spatial optimization of watershed best management practices based on slope position units[J]. Journal of Soil and Water Conservation,2018,73(5):504-517.
[33] 刘军,钱宇,段蓉蓉. 产业共生集聚:一种循环型产业集聚的新形态[J]. 江苏社会科学,2022(4):152-162.
[34] 陈曦,朱建华,李国平. 中国制造业产业间协同集聚的区域差异及其影响因素[J]. 经济地理,2018,38(12):104-110.
[35] 江静,刘志彪,于明超. 生产者服务业发展与制造业效率提升:基于地区和行业面板数据的经验分析[J]. 世界经济,2007(8):52-62.
[36] 李晓萍,李平,吕大国,等. 经济集聚、选择效应与企业生产率[J]. 管理世界,2015,259(4):25-51.
文章导航

/