Spatial Differentiation and Influencing Factors of Network Attention to Scenic-spot villages in Zhejiang Province Based on the Data of Douyin
Received date: 2025-01-14
Revised date: 2025-04-20
Online published: 2025-07-07
Based on the data of Douyin, this paper reveals the spatial distribution pattern and structural characteristics of the network attention degree of scenic-spot villages in Zhejiang Province and explores its influencing factors by the means of. The methods of rank-size, kernel density, nearest neighbor index and GeoDetector. The research findings are as follows: 1) The scenic-spot villages with higher network attention degree have obvious advantages, while the scenic-spot villages with high and low network attention degrees have poorly development. 2) The kernel density distribution of the network attention degree of scenic-spot villages presents a T-shaped spatial agglomeration structure which have five core agglomeration areas. 3) The kernel density distribution of the network attention degree of three types of scenic-spot villages presents a spatial pattern which is one area with low-level kernel density, two areas with high-level kernel density, and distinct differentiation. 4) The regional economic level and service industry support are important factors affecting the spatial distribution of the network attention degree of scenic-spot villages. Vegetation coverage rate, the living standards of rural residents, and the network penetration level also affect the spatial distribution of the network attention degree of scenic-spot villages. Moreover, the results of the interaction detection of influencing factors show that the effect of multiple factors is stronger than that of a single factor. 5) The influencing degrees of the driving factors for three types of scenic-spot villages are different. The network penetration level is the most influential factor for the spatial distribution of the network attention degree of scenic-spot villages which belong to the type of characteristic leisure. The regional economic level is the most influential factor for the spatial distribution of the network attention degree of scenic-spot villages which belong to the types of folk-custom and culture, and nature-ecology. However, vegetation coverage rate and air quality are the factors with relatively large influence on the spatial distribution of the network attention degree of scenic-spot villages which belong to the type of nature-ecology.
CHEN Yujuan , WANG Yufan , SUN Ying . Spatial Differentiation and Influencing Factors of Network Attention to Scenic-spot villages in Zhejiang Province Based on the Data of Douyin[J]. Economic geography, 2025 , 45(5) : 213 -223 . DOI: 10.15957/j.cnki.jjdl.2025.05.022
表2 影响因子指标体系构建Tab.2 Construction of the impact factor index system |
影响因素 | 因子选取 | 简称 | 指标选择(单位) | VIF | q |
---|---|---|---|---|---|
自然环境 | 植被覆盖率 | SP | 植被指数 | 1.20 | 0.2926 |
空气质量 | AP | PM2.5浓度(μg/m³) | 1.20 | 0.1212 | |
地形地势 | AL | 海拔(m) | 1.05 | 0.0386 | |
社会经济 | 人口量级支撑 | PS | 地区人口数量(人) | 1.18 | 0.2093 |
地区经济水平 | AG | 人均GDP(元/人) | 1.11 | 0.3213 | |
服务业支撑 | TO | 第三产业产值(亿元) | 1.58 | 0.2994 | |
农村居民生活水平 | RI | 农村居民收入(元/人) | 1.14 | 0.2474 | |
城乡发展差距 | IR | 城乡收入比 | 1.17 | 0.1642 | |
交通配套 | 交通通达距离 | RN | 距近邻交通要道距离(m) | 1.04 | 0.0711 |
客源市场距离 | CN | 距最近行政城市距离(m) | 1.01 | 0.0443 | |
旅游资源 | 高级别景区数 | SN | 4A 级及以上景区数量(个) | 1.20 | 0.1423 |
网络发展 | 网络普及水平 | IN | 固定互联网宽带(万户) | 1.47 | 0.2266 |
表3 影响因子交互探测结果Tab.3 Results of interaction detection for impact factors |
SP | AP | AL | PS | AG | TO | RI | IR | RN | CN | SN | IN | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
q值 | SP | 0.293 | - | - | - | - | - | - | - | - | - | - | - |
AP | 0.667 | 0.121 | - | - | - | - | - | - | - | - | - | - | |
AL | 0.386 | 0.275 | 0.039 | - | - | - | - | - | - | - | - | - | |
PS | 0.656 | 0.682 | 0.364 | 0.209 | - | - | - | - | - | - | - | - | |
AG | 0.709 | 0.589 | 0.465 | 0.683 | 0.321 | - | - | - | - | - | - | ||
TO | 0.668 | 0.687 | 0.406 | 0.685 | 0.626 | 0.299 | - | - | - | - | - | - | |
RI | 0.658 | 0.672 | 0.417 | 0.744 | 0.654 | 0.653 | 0.247 | - | - | - | - | - | |
IR | 0.641 | 0.526 | 0.303 | 0.635 | 0.715 | 0.620 | 0.636 | 0.164 | - | - | - | - | |
RN | 0.361 | 0.238 | 0.149 | 0.315 | 0.456 | 0.370 | 0.354 | 0.265 | 0.071 | - | - | - | |
CN | 0.400 | 0.270 | 0.123 | 0.330 | 0.495 | 0.411 | 0.394 | 0.285 | 0.129 | 0.044 | - | - | |
SN | 0.683 | 0.594 | 0.287 | 0.579 | 0.623 | 0.673 | 0.689 | 0.578 | 0.224 | 0.265 | 0.142 | - | |
IN | 0.647 | 0.644 | 0.384 | 0.577 | 0.630 | 0.453 | 0.608 | 0.692 | 0.314 | 0.365 | 0.583 | 0.227 | |
交互 结果 | SP | - | - | - | - | - | - | - | - | - | - | - | - |
AP | □ | - | - | - | - | - | - | - | - | - | - | - | |
AL | □ | □ | - | - | - | - | - | - | - | - | - | - | |
PS | □ | □ | □ | - | - | - | - | - | - | - | - | - | |
AG | □ | □ | □ | □ | - | - | - | - | - | - | - | - | |
TO | □ | □ | □ | □ | □ | - | - | - | - | - | - | ||
RI | □ | □ | □ | □ | □ | □ | - | - | - | - | - | - | |
IR | □ | □ | □ | □ | □ | □ | □ | - | - | - | - | - | |
RN | ▲ | □ | □ | □ | □ | ▲ | □ | □ | - | - | - | - | |
CN | □ | □ | □ | □ | □ | □ | □ | □ | □ | - | - | - | |
SN | □ | □ | □ | □ | □ | □ | □ | □ | □ | □ | - | - | |
IN | □ | □ | □ | □ | □ | ▲ | □ | □ | □ | □ | □ | - |
注:“▲”表示双因子增强;“□”表示非线性增强。 |
表4 3类景区村庄网络关注度空间分布影响因素的地理探测结果Tab.4 Results of geographical detection of influencing factors for the spatial distribution of network attention degree of three types of scenic-spot villages |
SP | AP | AL | PS | AG | TO | RI | IR | RN | CN | SN | IN | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
q值 | CC | 0.352 | 0.264 | 0.070 | 0.247 | 0.348 | 0.362 | 0.364 | 0.275 | 0.103 | 0.121 | 0.367 | 0.410 |
FC | 0.251 | 0.135 | 0.061 | 0.182 | 0.341 | 0.305 | 0.189 | 0.153 | 0.054 | 0.072 | 0.082 | 0.212 | |
NE | 0.348 | 0.152 | 0.053 | 0.246 | 0.387 | 0.373 | 0.262 | 0.193 | 0.105 | 0.058 | 0.172 | 0.306 |
[1] |
陈劼绮, 陆林. 乡村旅游创新的理论框架与研究展望[J]. 地理学报, 2024, 79(4):1027-1044.
|
[2] |
许艳, 陆林, 赵海溶. 乌镇景区网络关注度动态演变与空间差异分析[J]. 经济地理, 2020, 40(7):200-210.
|
[3] |
丁志伟, 马芳芳, 张改素. 基于抖音粉丝量的中国城市网络关注度空间差异及其影响因素[J]. 地理研究, 2022, 41(9):2548-2567.
|
[4] |
李山, 邱荣旭, 陈玲. 基于百度指数的旅游景区络空间关注度:时间分布及其前兆效应[J]. 地理与地理信息科学, 2008(6):102-107.
|
[5] |
马丽君, 孙根年, 黄芸玛, 等. 城市国内客流量与游客网络关注度时空相关分析[J]. 经济地理, 2011, 31(4):680-685.
|
[6] |
李会琴, 李丹, 董晓晴, 等. 中国5A级景区分布及网络关注度空间格局研究[J]. 干旱区资源与环境, 2019, 33(10):178-184.
|
[7] |
张新成, 梁学成, 高楠, 等. 长征主题红色旅游资源关注度的空间网络结构及其形成机制分析[J]. 旅游科学, 2021, 35(3):1-23.
|
[8] |
史春云, 范爽, 岳梦凡, 等. 基于网络关注度分析的乡村旅游季节性特征及其调控机制——以徐州市为例[J/OL]. 旅游科学,1-13[2024-12-29]. https://doi.org/10.16323/j.cnki.lykx.20240909.001.
|
[9] |
张晓梅, 程绍文, 刘晓蕾, 等. 古城旅游地网络关注度时空特征及其影响因素——以平遥古城为例[J]. 经济地理, 2016, 36(7):196-202,207.
|
[10] |
罗婉琳, 王芳, 丁志伟. 中国红色景区抖音网络关注度的空间差异及其影响因素[J]. 经济地理, 2023, 43(3):198-210.
|
[11] |
王伟, 吕婷婷, 周晓冰. 河南5A级景区网络关注度时空演变特征与影响因素[J]. 河南师范大学学报(自然科学版), 2023, 51(2):70-78.
|
[12] |
唐鸿, 许春晓. 中国红色旅游经典景区网络关注度时空演变及影响因素[J]. 自然资源学报, 2021, 36(7):1792-1810.
|
[13] |
焦珊珊, 李明, 田逢军, 等. 中国红色旅游经典景区网络关注度分布格局及驱动机制[J]. 经济地理, 2022, 42(1):211-220.
|
[14] |
叶永祥, 崔亭亭, 陈馨, 等. 基于多源数据的城市公园网络关注度时空特征与影响因素研究[J]. 南京林业大学学报(自然科学版), 2024, 48(6):183-192.
|
[15] |
|
[16] |
孙斐, 张岳军. 短视频塑造城市旅游形象的传播机制及策略研究——以抖音为例[J]. 美术大观, 2019, 32(7):116-117.
|
[17] |
罗婉琳, 卞荷雨, 王洁, 等. 短视频视域下中国红色景区关注水平的空间差异及提升路径研究[J]. 地理研究, 2024, 43(12):3327-3349.
|
[18] |
琚胜利. 乡村旅游地游客网络关注度特征、机制与空间响应研究[D]. 南京: 南京师范大学, 2018.
|
[19] |
罗婉琳, 于佳甜, 王世鹏, 等. 湖南省红色景区网络关注度的空间差异及其影响因素[J]. 湖南师范大学自然科学学报, 2024, 47(6):34-43.
|
[20] |
黄英, 周智, 黄娟. 大数据时代乡村旅游发展的时空分异特征[J]. 浙江农业学报, 2014, 26(6):1709-1714.
|
[21] |
万田户, 张志荣, 李树亮, 等. 乡村旅游国内网络关注度的时空分布研究[J]. 西南大学学报(自然科学版), 2022, 44(6):138-149.
|
[22] |
琚胜利, 陶卓民, 韩彦林. 南京乡村旅游景区游客网络关注与景区引力耦合协调度[J]. 经济地理, 2017, 37(11):220-228.
|
[23] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
|
[24] |
徐菊凤, 任心慧. 旅游资源与旅游吸引物:含义、关系及适用性分析[J]. 旅游学刊, 2014, 29(7):115-125.
|
[25] |
|
[26] |
王秀伟, 李晓军. 中国乡村旅游重点村的空间特征与影响因素[J]. 地理学报, 2022, 77(4):900-917.
|
[27] |
陈曦, 田逢军, 雷梦园. 我国乡村旅游网络关注度时空特征及影响机理[J]. 老区建设, 2023, 38(4):25-37.
|
/
〈 |
|
〉 |