Multi-Scale Temporal and Spatial Differentiation Characteristics of Dunhuang Tourism Flow Based on Social Big Data
Received date: 2020-03-16
Revised date: 2020-09-28
Online published: 2025-04-30
Based on the social network big data and taking the world cultural heritage site and international tourism city- Dunhuang- as research area,this article reveals the differentiation law of the tourism flow at the multi-time scale and analyzes its dynamic evolution trajectory and characteristics at the 24h tourism flow period applying kernel density,time stratification analysis,climate comprehensive comfort (CCI). It is found that: (1) The change of tourism flow in Dunhuang City shows the distribution characteristics of"single-peak and multiple-mountain". The tourist flow shows the spurt growt on the National Day and the vertiginous drop at the end of the holiday and cold days. (2) The tourist flow in Dunhuang shows significant anti-seasonal,regularity and similarity characteristics during the year. The peak-flow structure was formed during the change ofthe off-season and peak season. (3) The tourism flow was not affected at the weekend. The fluctuation characteristics of the tourism flow within 24 hours were extremely obvious and presented the rapid decline at the beginning and then the slow growth. (4) The spatial distribution of tourism flow in Dunhuang City exhibits the characteristics of "high concentration,multi-center" spatial differentiation,spatial imbalance,and prominent spatial convergence and divergence. (5) The spatial segregation of tourism flow in Dunhuang is remarkable,and the imbalance of tourism development is partially prominent. Contrary to the western tour route,it presents a higher spatial structure in the eastern tour route.
MA Binbin , CHEN Xingpeng , CHEN Fangting . Multi-Scale Temporal and Spatial Differentiation Characteristics of Dunhuang Tourism Flow Based on Social Big Data[J]. Economic geography, 2021 , 41(3) : 202 -212 . DOI: 10.15957/j.cnki.jjdl.2021.03.021
表1 敦煌市旅游淡旺季划分及主要特征Tab.1 Time division of off-season and peak season and their main characteristics in Dunhuang City |
时段 | 持续时间 | 主要特征 | 典型月 | 典型周 |
---|---|---|---|---|
淡季 | 12月初至1月初 | 天气寒冷,气候舒适度低,客流量较小且波动幅度大 | 1月 | 12.30~1.30 |
淡季转旺季 | 1月中旬至2月末 3月初至4月末 | 客流量反季节性特征明显,气候逐渐适宜,客流量呈波动性增长趋势,逐渐回温 | 2月 | 3.2~3.16 |
旺季 | 5月初10月中旬 | 气候舒适,伴随清明、“五一”、暑假、“十一”黄金周等节假日,该阶段客流量处于高位波段 | 5月、10月 | 9.30~10.07 |
旺季转淡季 | 10月末至11月末 | 天气渐冷,客流量回落且波动幅度较大 | 11月 | 11.15~12.01 |
表2 敦煌市旅游流24 h主要轨迹Tab.2 main track of tourist flow in Dunhuang within a day |
旅游流轨迹 | 时间 |
---|---|
敦煌市区→鸣沙山月牙泉→莫高窟 | 6~24 h |
敦煌市区→敦煌古城 | 6~12 h |
敦煌市区→阳关景区 | 9~15 h |
敦煌市区→玉门关→雅丹魔鬼城 | 6~18 h |
敦煌市区→莫高窟数字展示中心 | 6~次日3 h |
莫高窟→敦煌市区 | 18~21 h |
莫高窟数字展示中心→敦煌市区 | 18~24 h |
敦煌古城→敦煌市区 | 18~24 h |
阳关景区→敦煌市区 | 15~21 h |
雅丹魔鬼城→玉门关→敦煌市区 | 18~21 h |
[1] |
|
[2] |
H.巴凯斯, 路紫. 从地理空间到地理网络空间的变化趋势——兼论西方学者关于电信对地区影响的研究[J]. 地理学报, 2000, 55(1):104-110.
|
[3] |
高春东, 郭启全, 江东. 网络空间地理学的理论基础与技术路径[J]. 地理学报, 2019, 74(9):1709-1723.
|
[4] |
|
[5] |
|
[6] |
王录仓, 严翠霞, 李巍. 基于新浪微博大数据的旅游流时空特征研究——以兰州市为例[J]. 旅游学刊, 2017, 32(5):94-105.
|
[7] |
|
[8] |
闫闪闪, 梁留科, 索志辉, 等. 基于大数据的洛阳市旅游流时空分布特征[J]. 经济地理, 2017, 37(8):216-224.
|
[9] |
张铁生, 孙根年. 旅游地客流量峰林结构及成因探析——湖南凤凰入境旅游与国内旅游的比较[J]. 旅游科学, 2014(1):48-57,79.
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
林岚, 康志林, 甘萌雨, 等. 基于航空口岸的台胞大陆旅游流空间场效应分析[J]. 地理研究, 2007, 26(2):403-412.
|
[21] |
张佑印, 顾静, 马耀峰. 旅游流研究的进展、评价与展望[J]. 旅游学刊, 2013, 28(6):38-46.
|
[22] |
中国互联网络信息中心. 中国互联网络发展状况统计报告[R]. 2019.
|
[23] |
新浪微博数据中心. 2018微博用户发展报告[R]. 2019.
|
[24] |
|
[25] |
刘法建, 张捷, 章锦河, 等. 旅游流空间数据获取的基本方法分析——国内外研究综述及比较[J]. 旅游学刊, 2012, 27(6):101-109.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
陈晓艳, 张子昂, 胡小海, 等. 微博签到大数据中旅游景区客流波动特征分析——以南京市钟山风景名胜区为例[J]. 经济地理, 2018, 38(9):206-214.
|
[34] |
陈志军, 徐飞雄, 刘嘉毅. 世界自然遗产地旅游发展与遗产保护协调的战略管理研究——基于崀山的实证分析[J]. 中南林业科技大学学报:社会科学版, 2016, 10(6):68-76.
|
[35] |
刘姗姗. 敦煌市旅游环境承载力分析[D]. 兰州: 西北师范大学, 2014.
|
[36] |
敦煌市人民政府. 敦煌市2018年国民经济和社会发展统计公报[EB/OL]. http://www.dunhuang.gov.cn/lidunhuang/jjshfzqk/20190715/10515356333dc8.html?keywords=,2019-07-15.
|
[37] |
|
[38] |
刘多森, 蔡蔚祺. 北京郊区乡村旅游季节性特征及其影响因素[J]. 地理科学进展, 2012, 31(6):817-824.
|
[39] |
马斌斌, 陈兴鹏, 马凯凯, 等. 中国乡村旅游重点村空间分布、类型结构及影响因素[J]. 经济地理, 2020, 40(7):190-199.
|
[40] |
王新越, 候娟娟. 山东省乡村休闲旅游地的空间分布特征及影响因素[J]. 地理科学, 2016, 36(11):1706-1714.
|
/
〈 |
|
〉 |