Trade Characteristics and Its Influencing Factors between China and Small Island Developing States
Received date: 2018-07-31
Revised date: 2018-09-20
Online published: 2025-04-29
Based on the analysis of the total trade volume and trade balance between China and Small Island Developing States(SIDS) from 2001 to 2017, this article analyzes the trade dependence and the factors affecting trade evolution between China and SIDS by using the HM index and trade gravity model. Conclusions are drawn as follows: 1) Total trade volume is fluctuating between China and SIDS, and the spatial differentiation is becoming more and more obvious. The trade volume is highest between China and SIDS in the Caribbean, and the trade volume is lowest between China and SIDS in the west coast of Africa. Malta is China's largest trading partner. 2) Trade balance shows a trade surplus between China and SIDS, and the trade surplus increases year by year. The trade surplus between China and SIDS in the Caribbean is the largest, and the trade surplus between China and SIDS in the west coast of Africa is the smallest. The Marshall Islands is the largest commodity export market in China. 3) The dependence degree of SIDS on China's trade is significantly higher than that of China's trade dependence on small island countries. However, this dependence shows the characteristics of low overall, strong volatility and distinct spatial differentiation. The Solomon Islands have the highest dependence on China's trade (mainly timber and charcoal exports). Tuvalu is the least dependence on China's trade. 4) Economic scale, population size and foreign direct investment have positive effects on trade between China and SIDS, while geographical distance has negative effect on trade between China and SIDS.
YIN Peng , LIU Shuguang , DUAN Peili , WANG Lu . Trade Characteristics and Its Influencing Factors between China and Small Island Developing States[J]. Economic geography, 2019 , 39(3) : 117 -124 . DOI: 10.15957/j.cnki.jjdl.2019.03.014
表1 贸易引力模型回归结果Tab.1 The regression results of trade gravity model |
变量 | Coefficient | Std.Error | T-statistic | Prob. |
---|---|---|---|---|
lnGiGj | 0.8138 | 0.0549 | 14.8210 | 0.0000 |
lnPiPj | 0.1624 | 0.0568 | 2.8570 | 0.0044 |
lnDij | -0.7590 | 0.2001 | -3.7933 | 0.0002 |
lnFij | 0.1277 | 0.0250 | 5.1017 | 0.0000 |
Constant | -10.0307 | 1.9177 | -5.2307 | 0.0000 |
R-squared | 0.6796 | Adjusted R-squared | 0.6774 | - |
F-statistic | 303.8294 | Prob(F-statistic) | 0.0000 | - |
[1] |
张亚斌, 范子杰. 国际贸易格局分化与国际贸易秩序演变[J]. 世界经济与政治, 2015(3):30-46.
|
[2] |
|
[3] |
张勤, 李海勇. 入世以来我国在国际贸易中角色地位变化的实证研究——以社会网络分析为方法[J]. 财经研究, 2012(10):79-89.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
邱巨龙, 曲建升, 李燕, 等. 小岛国联盟在国际气候行动格局中的地位分析[J]. 世界地理研究, 2012, 21(1):158-167.
|
[8] |
梁甲瑞. 中国—大洋洲—南太平洋蓝色经济通道构建:基础、困境及构想[J]. 中国软科学, 2018(3):1-9.
|
[9] |
杨文龙, 杜德斌, 马亚华, 等. 经济权力视角下中美战略均势的地理透视[J]. 地理研究, 2017, 36(10):1901-1 914.
|
[10] |
姜宝, 邢晓丹, 李剑. “走出去”战略下中国对欧盟逆向投资的贸易效应研究——基于FGLS和PCSE修正的面板数据模型[J]. 国际贸易问题, 2015(9):167-176.
|
[11] |
李昊, 黄季焜. 中非农产品贸易:发展现状及影响因素实证研究[J]. 经济问题探索, 2016(4):142-149.
|
[12] |
宗会明, 郑丽丽. “一带一路”背景下中国与东南亚国家贸易格局分析[J]. 经济地理, 2017, 37(8):1-9.
|
[13] |
|
[14] |
宋周莺, 车姝韵, 杨宇. “一带一路”贸易网络与全球贸易网络的拓扑关系[J]. 地理科学进展, 2017, 36(11):1340-1 348.
|
[15] |
公丕萍, 宋周莺, 刘卫东. 中国与“一带一路”沿线国家贸易的商品格局[J]. 地理科学进展, 2015, 34(5):571-580.
|
[16] |
李思奇. “一带一路”背景下中国与中亚五国贸易便利化的经贸效应研究[J]. 东北亚论坛, 2018(4):112-126.
|
[17] |
姚秋蕙, 韩梦瑶, 刘卫东. 全球服装贸易网络演化研究[J]. 经济地理, 2018, 38(4):26-36.
|
[18] |
胡艺, 杨晨迪, 沈铭辉. “一带一路”背景下中国与南亚诸国贸易潜力分析[J]. 南亚研究, 2017(4):78-92.
|
[19] |
|
[20] |
伍维模, 刘世权, 赵汝东, 等. 小岛屿发展中国家面临的气候变化挑战和应对策略——以塞舌尔共和国为例[J]. 科技通报, 2016, 32(4):48-54.
|
[21] |
|
[22] |
张雨佳, 张晓平, 龚则周. 中国与“一带一路”沿线国家贸易依赖度分析[J]. 经济地理, 2017, 37(4):21-31.
|
[23] |
阳茂庆, 杨林, 胡志丁. “一带一路”背景下中国与中南半岛贸易格局演变及面临的挑战[J]. 热带地理, 2015, 35(5):655-663.
|
[24] |
|
[25] |
刘倩, 刘清杰, 刘敏. “丝绸之路经济带”背景下新疆与欧亚经济联盟贸易潜力实证研究[J]. 经济地理, 2018, 38(4):65-72.
|
[26] |
傅帅雄, 罗来军. 技术差距促进国际贸易吗?——基于引力模型的实证研究[J]. 管理世界, 2017(2):43-52.
|
/
〈 |
|
〉 |