Temporal and Spatial Characteristics of Network Attention on Tourist Satisfaction in China
Received date: 2018-08-07
Revised date: 2018-12-20
Online published: 2025-04-27
As an important indicator in measuring satisfaction, the tourist satisfaction will directly affect the tourism destination choice, revisit rate, consumption of the tourism products and services, which has important significance to the development of the tourism industry and the tourism destination management. With the rapid development of the mobile Internet and the popularity of the Internet, network attention of tourist satisfaction has become an important factor in affecting the tourist destination choice. Based on this, the 31 provinces (municipalities and autonomous regions) as the research scope and the "tourist satisfaction" as the research object, this article studies the current network attention characteristics of the tourist satisfaction and the influence factors. The results are as followings: Network attention of tourist satisfaction which shows a fluctuant change overall is relatively obvious in April, May, December and January. The regional network attention of tourist satisfaction has remarkable differences, but its difference generally reduces in the east, middle and west of China, which help operators and regulators to take tourists as the guide, improve the degree of tourist satisfaction and attach importance to demand based on the supply side, it forms a good situation in the linkage of supply and demand in order to promote the development of regional tourism.
SHENG Yanchao , WU Xinyang . Temporal and Spatial Characteristics of Network Attention on Tourist Satisfaction in China[J]. Economic geography, 2019 , 39(2) : 232 -240 . DOI: 10.15957/j.cnki.jjdl.2019.02.028
表1 2013—2016年全国各月游客满意度网络关注度指数与季节集中度指数Tab.1 Network attention and seasonal concentration index of tourist satisfaction in each month of 2013-2016 |
月份 | 网络关注度 | 季节集中度指数 | |||||||
---|---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2013 | 2014 | 2015 | 2016 | ||
1月 | 3 409 | 2 644 | 2 587 | 2 206 | 1.122821 | 0.017239 | 0.208091 | 0.417622 | |
2月 | 1 973 | 2 298 | 1 425 | 1 439 | 8.384711 | 1.450092 | 12.182220 | 6.124110 | |
3月 | 3 394 | 3 094 | 3 908 | 2 978 | 1.036970 | 1.597939 | 24.429820 | 14.345250 | |
4月 | 4 972 | 4 719 | 3 267 | 2 751 | 28.780070 | 39.727960 | 7.648760 | 8.201623 | |
5月 | 5 675 | 3 452 | 3 448 | 3 224 | 53.304970 | 5.636863 | 11.426870 | 22.929630 | |
6月 | 2 692 | 2 524 | 2 509 | 1 440 | 0.837678 | 0.253412 | 0.036581 | 6.103988 | |
7月 | 2 385 | 2 426 | 1 699 | 1 448 | 3.100550 | 0.651711 | 6.552188 | 5.944200 | |
8月 | 1 777 | 1 285 | 2 133 | 1 323 | 11.802610 | 18.882330 | 1.178831 | 8.683036 | |
9月 | 1 672 | 1 544 | 1 314 | 1 033 | 13.873390 | 12.547570 | 14.955940 | 17.029750 | |
10月 | 2 701 | 2 643 | 2 440 | 1 793 | 0.792916 | 0.018063 | 0.001856 | 1.069703 | |
11月 | 2 302 | 2 519 | 1 729 | 2 303 | 3.957912 | 0.269262 | 6.040957 | 1.083537 | |
12月 | 3 354 | 3 101 | 2 985 | 2 638 | 0.824723 | 1.653287 | 3.268462 | 5.779454 | |
全国 | 36 306 | 32 249 | 29 444 | 24 567 | 3.263680 | 2.625289 | 2.706944 | 2.853535 |
表2 2013—2016年全国各地区游客满意度网络关注度指数与季节集中度指数Tab.2 Network attention and seasonal concentration index of tourist satisfaction in different cities during 2013-2016 |
地区 | 游客满意度网络关注度 | 季节集中度指数 | |||||||
---|---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2013 | 2014 | 2015 | 2016 | ||
北京 | 3 523(1) | 4 098(2) | 2 911(3) | 2 185(3) | 3.806727 | 4.706164 | 3.973232 | 3.539718 | |
福建 | 1 834(8) | 1 724(6) | 1 205(8) | 1 433(6) | 4.460941 | 6.018074 | 5.180629 | 6.982115 | |
广东 | 2 300(4) | 2 467(4) | 1 897(4) | 1 834(5) | 3.592875 | 6.003627 | 6.905791 | 5.478440 | |
河北 | 1 216(13) | 461(19) | 365(22) | 579(14) | 7.104120 | 14.643950 | 10.575760 | 9.933825 | |
海南 | 576(21) | 228(24) | 285(24) | 783(10) | 15.790500 | 11.785110 | 9.860134 | 8.290448 | |
江苏 | 2 855(3) | 4 158(1) | 3 810(1) | 2 998(1) | 6.396851 | 3.220348 | 5.295419 | 3.055933 | |
辽宁 | 808(17) | 627(14) | 524(17) | 402(21) | 7.669330 | 8.670852 | 11.226970 | 10.882200 | |
上海 | 1 144(15) | 1 503(8) | 1 846(5) | 1 917(4) | 8.966031 | 6.255346 | 5.316226 | 4.289066 | |
山东 | 1 718(9) | 1 898(5) | 1 185(10) | 629(13) | 5.333343 | 6.899517 | 10.925530 | 6.918163 | |
天津 | 627(20) | 570(17) | 342(23) | 344(24) | 10.135670 | 8.975275 | 8.333334 | 10.734410 | |
浙江 | 2 891(2) | 3 710(3) | 3 095(2) | 2 193(2) | 4.523828 | 4.579169 | 3.574245 | 4.960106 | |
安徽 | 1 912(6) | 513(18) | 742(14) | 519(16) | 15.543040 | 9.212847 | 9.662211 | 10.300370 | |
黑龙江 | 344(26) | 57(30) | 229(25) | 59(30) | 10.734410 | 27.638540 | 15.619580 | 27.638540 | |
河南 | 1 522(10) | 1 374(9) | 1 036(12) | 857(9) | 3.528121 | 7.587577 | 4.850541 | 5.509320 | |
湖南 | 1 428(12) | 1 091(10) | 1 207(7) | 686(12) | 9.298576 | 9.452846 | 7.062326 | 9.042374 | |
湖北 | 1 208(14) | 978(12) | 1 144(11) | 742(11) | 7.578260 | 8.878795 | 7.731143 | 6.633922 | |
吉林 | 574(22) | 114(28) | 462(19) | 285(26) | 12.176820 | 18.633900 | 9.295817 | 9.860134 | |
江西 | 628(19) | 400(20) | 513(18) | 572(15) | 6.892451 | 10.830290 | 10.269020 | 9.889949 | |
山西 | 347(24) | 584(15) | 403(20) | 518(17) | 16.042610 | 12.065810 | 13.701100 | 11.265720 | |
重庆 | 515(23) | 171(26) | 399(21) | 399(22) | 11.255010 | 19.837300 | 10.845750 | 9.144222 | |
甘肃 | 323(27) | 399(21) | 114(28) | 288(25) | 15.524940 | 10.845750 | 18.633900 | 12.884710 | |
广西 | 1 463(11) | 576(16) | 863(13) | 514(18) | 6.382197 | 6.827356 | 11.290560 | 12.118040 | |
贵州 | 764(18) | 635(13) | 591(16) | 514(19) | 7.863638 | 7.872299 | 9.628857 | 8.031366 | |
内蒙古 | 235(28) | 286(23) | 171(26) | 399(23) | 15.796790 | 15.191920 | 14.433760 | 9.144222 | |
宁夏 | 114(29) | 76(29) | 56(31) | 65(28) | 27.638540 | 27.638540 | 27.638540 | 27.638540 | |
青海 | 57(31) | 171(27) | 57(30) | 52(31) | 27.638540 | 19.837300 | 27.638540 | 27.638540 | |
四川 | 2 154(5) | 1 661(7) | 1 207(9) | 1 087(7) | 3.781476 | 6.830491 | 8.644868 | 7.581325 | |
陕西 | 1 902(7) | 1 090(11) | 1 813(6) | 1 031(8) | 4.422477 | 6.990946 | 4.741620 | 7.005196 | |
西藏 | 114(30) | 57(31) | 114(29) | 62(29) | 18.633900 | 27.638540 | 18.633900 | 27.638540 | |
新疆 | 345(25) | 228(25) | 171(27) | 171(27) | 12.762470 | 11.785110 | 19.837300 | 14.433760 | |
云南 | 865(16) | 344(22) | 687(15) | 459(20) | 6.278082 | 8.334742 | 9.029660 | 13.844600 |
注:括号中数值代表该地区游客满意度网络关注度的规模位序。 |
表3 2013—2016年全国游客满意度网络关注度的区域与区域间差异Tab.3 Regional and interregional differences of network attention in national tourist satisfaction during 2013-2016 |
年份 | 区域差异 | 区域间差异 | |||||||
---|---|---|---|---|---|---|---|---|---|
CV | H | P | G | CV | H | P | G | ||
2013 | 0.7653 | 0.0351 | 1.2186 | 22.6171 | 0.4328 | 0.3957 | 2.2022 | 62.9110 | |
2014 | 1.0943 | 0.0460 | 1.0146 | 26.6250 | 0.7038 | 0.4984 | 3.7660 | 70.6011 | |
2015 | 0.9773 | 0.0474 | 1.2310 | 25.1137 | 0.5515 | 0.4347 | 2.7975 | 65.9353 | |
2016 | 0.9043 | 0.0417 | 1.3670 | 24.2246 | 0.6145 | 0.4592 | 3.0345 | 67.7671 |
表4 2013—2016年全国游客满意度网络关注度的区域内差异Tab.4 Regional differences of network attention in national tourist satisfaction during 2013-2016 |
年份 | CV | H | P | G | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
东部 | 中部 | 西部 | 东部 | 中部 | 西部 | 东部 | 中部 | 西部 | 东部 | 中部 | 西部 | ||||
2013 | 0.542 | 0.562 | 0.940 | 0.117 | 0.164 | 0.157 | 1.218 | 1.256 | 1.132 | 34.296 | 40.563 | 39.628 | |||
2014 | 0.724 | 0.688 | 0.954 | 0.138 | 0.184 | 0.159 | 1.014 | 1.259 | 1.523 | 37.233 | 42.933 | 39.897 | |||
2015 | 0.742 | 0.485 | 1.009 | 0.141 | 0.154 | 0.168 | 1.308 | 1.055 | 1.502 | 37.562 | 39.297 | 41.025 | |||
2016 | 0.613 | 0.452 | 0.785 | 0.125 | 0.150 | 0.134 | 1.367 | 1.154 | 1.054 | 35.378 | 38.809 | 36.712 |
[1] |
夏令, 任黎秀. 游客满意度差异研究及评价因子的验证分析[J]. 北京第二外国语学院学报, 2010(5):25-30.
|
[2] |
李瑛. 旅游目的地游客满意度及影响因子分析——以西安地区国内市场为例[J]. 旅游学刊, 2008, 23(4):43-48.
|
[3] |
丁建军, 朱群惠. 我国区域旅游产业发展潜力的时空差异研究[J]. 旅游学刊, 2012, 27(2):52-61.
|
[4] |
生延超, 周玉姣, 等. 中国旅游经济增长周期的测度与评价[J]. 人文地理, 2014, 139(5):113-121.
|
[5] |
李君轶, 杨敏. 西安国内游客旅游网络信息搜索行为研究[J]. 经济地理, 2010, 30(7):23-31.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
王永清, 严浩仁. 顾客满意度的测评[J]. 经济管理, 2000(8):68-97.
|
[15] |
刘宇. 顾客满意度(指数)测评基础技术的研究[J]. 数量经济技术经济研究, 2002(5):78-89.
|
[16] |
董观志. 旅游景区游客满意度测评体系研究[J]. 旅游学刊, 2005(1):99-121.
|
[17] |
谢彦君. 游景区游客满意度测评体系研究[J]. 旅游学刊, 2005(5):77-98.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
路紫, 赵亚红, 吴士锋, 等. 旅游网站访问者行为的时间分布及导引分析[J]. 地理学报, 2007, 62(6):621-630.
|
[22] |
韩冰, 路紫. 户外运动网站论坛功能评估及其互动作用对个人出行行为的导引[J]. 人文地理, 2007, 22(1):58-62.
|
[23] |
吴士锋, 陈兴鹏, 路紫, 等. 网站信息流对旅游人流增强作用研究[J]. 现代情报, 2009, 29(11):215-224.
|
[24] |
李山, 邱荣旭, 陈玲. 基于百度指数的旅游景区网络空间关注度:时间分布及其前兆效应[J]. 地理与地理信息科学, 2008, 24(6):102-107.
|
[25] |
龙茂兴, 孙根年, 马丽君, 等. 区域旅游网络关注度与客流量时空动态比较分析——以四川为例[J]. 地域研究与开发, 2011, 30(3):93-97.
|
[26] |
马丽君, 孙根年, 黄芸玛, 等. 城市国内客流量与游客网络关注度时空相关分析[J]. 经济地理, 2011, 31(4):680-685.
|
[27] |
张力. 基于百度指数分析的地域网络关注度研究——以镇江为例[J]. 图书情报研究, 2012, 3(5):91-98.
|
[28] |
林志慧, 马耀峰, 刘宪锋, 等. 旅游景区网络关注度时空分布特征研究[J]. 资源科学, 2012, 4(7):81-98.
|
[29] |
邹永广, 林炜铃, 郑向敏. 旅游安全网络关注度时空特征研究及其影响因素[J]. 旅游学刊, 2015, 30(2):101-109.
|
/
〈 |
|
〉 |