Financial Agglomeration Effect:Urban Agglomeration Border VS Provincial Administrative Border
Received date: 2020-02-18
Revised date: 2020-07-21
Online published: 2025-04-23
Under the background that we are promoting "urban agglomeration economy" instead of "administrative area economy", a comprehensive assessment of financial agglomeration effect of urban agglomeration border and provincial administrative border can provide an important reference for policy-making intended to enhance regional financial integration. This paper selects random effect model with time fixed effect to compare the financial agglomeration effect of urban agglomeration border and provincial administrative border based on data of 278 prefecture-level or above cities from 2005 to 2017. Results show that: 1) Urban agglomeration border has financial agglomeration effect. 2) Provincial administrative border doesn't have significant financial agglomeration effect. 3) There is strong heterogeneity between different sized cities. The financial agglomeration effect is significant only for large cities with 100-500 million permanent residents within municipal districts. In addition, the level of financial agglomeration of small cities and mega-cities are strongly influenced by geographical proximity and the proportion of tertiary industry, respectively.
FANG Fang , LI Changzhi . Financial Agglomeration Effect:Urban Agglomeration Border VS Provincial Administrative Border[J]. Economic geography, 2020 , 40(9) : 53 -61 . DOI: 10.15957/j.cnki.jjdl.2020.09.006
表1 城市金融集聚水平测度指标体系Tab.1 The index of financial agglomeration on centeral cities |
准则层 | 指标层 |
---|---|
金融规模 | 1.年末金融机构存贷款余额总和 |
2.金融业从业人员总数 | |
金融深度 | 3.年末金融及机构存贷款余额总和/年末总人口 |
4.金融业从业人员总数/年末总人口 | |
金融空间密度 | 5.年末金融机构存贷款余额总和/辖区面积 |
6.金融业从业人员总数/辖区面积 |
数据来源:《中国城市统计年鉴》《香港统计年刊》《澳门统计年鉴》。 |
表2 主成分分析的总方差解释情况Tab.2 Total variance explained |
成分 | 初始特征值 | 提取载荷平方和 | 旋转载荷平方和 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总计 | 方差百分比 | 累积% | 总计 | 方差百分比 | 累积% | 总计 | 方差百分比 | 累积% | |||
1 | 3.499 | 58.319 | 58.319 | 3.499 | 58.319 | 58.319 | 2.141 | 35.689 | 35.689 | ||
2 | 1.312 | 21.863 | 80.182 | 1.312 | 21.863 | 80.182 | 2.001 | 33.349 | 69.039 | ||
3 | 0.742 | 12.359 | 92.541 | 0.742 | 12.359 | 92.541 | 1.41 | 23.502 | 92.541 | ||
4 | 0.311 | 5.182 | 97.723 | ||||||||
… | … | … | … |
表3 主成分分析的旋转后的成分矩阵Tab.3 Rotated component matrixa |
成分 | 1 | 2 | 3 |
---|---|---|---|
年末金融机构存贷款余额总和 | 0.954 | 0.191 | 0.178 |
金融业从业人员总数 | 0.943 | 0.082 | 0.226 |
年末金融机构存贷款余额总和/辖区面积 | 0.110 | 0.970 | 0.043 |
金融业从业人员总数/辖区面积 | 0.165 | 0.895 | 0.269 |
金融业从业人员总数/年末总人口 | 0.210 | 0.123 | 0.953 |
年末金融机构存贷款余额总和/年末总人口 | 0.509 | 0.449 | 0.588 |
表4 基准模型的实证检验结果Tab.4 Results of the basic model |
Model1 | Model2 | Model3 | Model4 | Model5 | Model6 | Model7 | Model8 | Model9 | Model10 | Model11 | Model12 | Model13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.203*** | 0.200*** | 0.192*** | 0.185*** | 0.173** | 0.173** | 0.173** | 0.172** | 0.167** | 0.167** | 0.164** | 0.155** | 0.156** | |
(2.856) | (2.889) | (2.833) | (2.786) | (2.567) | (2.524) | (2.524) | (2.514) | (2.449) | (2.453) | (2.227) | (2.148) | (2.151) | |
0.0964** | -0.0210 | -0.0279 | -0.00717 | -0.0200 | -0.0199 | -0.0197 | -0.0251 | -0.0376 | -0.0534 | -0.0246 | -0.0282 | -0.0279 | |
(2.068) | (-0.583) | (-0.825) | (-0.226) | (-0.617) | (-0.615) | (-0.614) | (-0.778) | (-1.135) | (-1.632) | (-0.570) | (-0.734) | (-0.729) | |
0.276*** | 0.271*** | 0.196*** | 0.170*** | 0.163*** | 0.164*** | 0.164*** | 0.171*** | 0.156*** | 0.142*** | 0.116*** | 0.118*** | 0.118*** | |
(5.959) | (6.337) | (5.725) | (5.065) | (4.864) | (4.973) | (4.849) | (4.334) | (4.261) | (4.189) | (3.236) | (3.676) | (3.687) | |
-0.116*** | -0.068*** | -0.0202 | -0.0369 | -0.0374 | -0.0374 | -0.0365 | -0.0516* | -0.0440* | -0.0337 | -0.0508* | -0.0477* | ||
(-4.943) | (-3.769) | (-1.131) | (-1.302) | (-1.338) | (-1.332) | (-1.470) | (-1.948) | (-1.824) | (-1.269) | (-1.854) | (-1.733) | ||
0.0827*** | 0.123*** | 0.134*** | 0.133*** | 0.133*** | 0.131*** | 0.151*** | 0.143*** | 0.164*** | 0.109*** | 0.107*** | |||
(4.652) | (6.498) | (5.453) | (5.164) | (5.262) | (5.126) | (4.765) | (4.825) | (3.916) | (4.973) | (5.006) | |||
0.119*** | 0.140*** | 0.140*** | 0.140*** | 0.149*** | 0.158*** | 0.153*** | 0.260** | 0.141** | 0.139** | ||||
(6.228) | (5.774) | (5.799) | (5.737) | (3.523) | (3.524) | (3.587) | (1.984) | (2.159) | (2.175) | ||||
-0.00442 | -0.00442 | -0.00449 | -0.00111 | -0.00431 | -0.00459 | -0.00220 | -0.000259 | 3.51e-05 | |||||
(-0.417) | (-0.416) | (-0.436) | (-0.122) | (-0.468) | (-0.499) | (-0.238) | (-0.0254) | (0.00341) | |||||
0.00660 | 0.00691 | 0.00466 | 0.0477** | 0.0298 | 0.0334 | 0.0226 | 0.0253 | ||||||
(0.304) | (0.306) | (0.176) | (2.273) | (1.408) | (1.377) | (0.842) | (0.974) | ||||||
0.00208 | 0.0102 | -0.0122 | -0.0645** | -0.0853* | -0.0265 | -0.0251 | |||||||
(0.0684) | (0.358) | (-0.431) | (-2.058) | (-1.904) | (-0.837) | (-0.763) | |||||||
-0.0229 | -0.0280 | -0.0467 | -0.0284 | -0.0385* | -0.0398* | ||||||||
(-0.532) | (-0.630) | (-0.997) | (-1.304) | (-1.747) | (-1.712) | ||||||||
-0.166** | 0.0168 | 0.0918 | 0.0209 | 0.0231 | |||||||||
(-2.170) | (0.318) | (0.932) | (0.342) | (0.374) | |||||||||
0.327*** | 0.377*** | 0.249*** | 0.263*** | ||||||||||
(3.769) | (2.962) | (3.756) | (3.553) | ||||||||||
-0.139 | -0.178 | -0.178 | |||||||||||
(-1.025) | (-1.387) | (-1.387) | |||||||||||
0.149** | 0.149** | ||||||||||||
(2.328) | (2.328) | ||||||||||||
0.00694 | |||||||||||||
(0.466) | |||||||||||||
常数 | -0.00883 | 0.185*** | -0.285*** | -0.849*** | -0.920*** | -0.943*** | -0.952*** | -0.977*** | -0.517** | -2.126*** | -2.926*** | -1.445*** | -1.517*** |
(-0.433) | (4.511) | (-3.240) | (-6.684) | (-5.988) | (-6.442) | (-5.256) | (-4.554) | (-2.151) | (-4.965) | (-2.665) | (-3.345) | (-3.163) | |
样本数 | 3 245 | 3 245 | 3 245 | 3 245 | 2 863 | 2 863 | 2 863 | 2 779 | 2 779 | 2 779 | 2 767 | 2 755 | 2 755 |
注:***、**和*分别表示在1%、5%和10%水平下显著,下同。时间固定效应均显著,为节省篇幅,表4中略去时间固定效应结果。 |
表5 带有时间趋势项的面板随机效应模型的实证检验结果Tab.5 Results of the panel random effect model with time trend |
Model1 | Model2 | Model3 | Model4 | Model5 | Model6 | Model7 | Model8 | Model9 | Model10 | Model11 | Model12 | Model13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.188** | 0.184*** | 0.180*** | 0.176*** | 0.163*** | 0.162*** | 0.162*** | 0.162*** | 0.159*** | 0.159*** | 0.153*** | 0.149*** | 0.150*** | |
(2.467) | (7.794) | (7.632) | (7.473) | (6.492) | (6.473) | (6.466) | (6.384) | (6.290) | (6.305) | (5.908) | (5.830) | (5.847) | |
0.109** | -0.0104 | -0.0181 | 0.00242 | -0.0102 | -0.0103 | -0.0108 | -0.0191 | -0.0350 | -0.0518 | -0.0142 | -0.0217 | -0.0213 | |
(2.035) | (-0.202) | (-0.359) | (0.0485) | (-0.186) | (-0.187) | (-0.195) | (-0.340) | (-0.618) | (-0.931) | (-0.289) | (-0.488) | (-0.477) | |
0.282*** | 0.279*** | 0.203*** | 0.179*** | 0.171*** | 0.172*** | 0.173*** | 0.182*** | 0.165*** | 0.151*** | 0.112*** | 0.117*** | 0.118*** | |
(5.538) | (11.59) | (6.776) | (5.886) | (5.096) | (5.023) | (4.978) | (5.133) | (4.511) | (4.182) | (3.505) | (4.045) | (4.046) | |
-0.120*** | -0.0724** | -0.0251 | -0.0407 | -0.0411 | -0.0412 | -0.0374 | -0.0554 | -0.0471 | -0.0335 | -0.0505 | -0.0469 | ||
(-3.731) | (-2.156) | (-0.699) | (-0.908) | (-0.913) | (-0.912) | (-0.809) | (-1.179) | (-1.021) | (-0.829) | (-1.384) | (-1.260) | ||
0.0834*** | 0.124*** | 0.134*** | 0.134*** | 0.133*** | 0.132*** | 0.157*** | 0.147*** | 0.173*** | 0.110*** | 0.107*** | |||
(4.033) | (5.225) | (4.924) | (4.848) | (4.792) | (4.644) | (5.026) | (4.778) | (6.344) | (4.126) | (3.936) | |||
0.119*** | 0.139*** | 0.139*** | 0.139*** | 0.160*** | 0.170*** | 0.164*** | 0.291*** | 0.158*** | 0.157*** | ||||
(3.331) | (3.210) | (3.206) | (3.196) | (3.341) | (3.545) | (3.496) | (6.435) | (3.498) | (3.451) | ||||
-0.000383 | -0.000375 | -9.80e-05 | 0.00331 | -0.00164 | 7.43e-05 | -0.00145 | 0.00378 | 0.00415 | |||||
(-0.0251) | (-0.0246) | (-0.00636) | (0.210) | (-0.103) | (0.00474) | (-0.103) | (0.295) | (0.323) | |||||
0.00485 | 0.00369 | 0.000101 | 0.0503 | 0.0331 | 0.0350 | 0.0253 | 0.0286 | ||||||
(0.134) | (0.0988) | (0.00260) | (1.071) | (0.715) | (0.861) | (0.691) | (0.768) | ||||||
-0.00762 | 0.00883 | -0.0168 | -0.0714 | -0.0936* | -0.0304 | -0.0287 | |||||||
(-0.136) | (0.152) | (-0.282) | (-1.169) | (-1.747) | (-0.619) | (-0.584) | |||||||
-0.0394 | -0.0444* | -0.0644** | -0.0328 | -0.0431** | -0.0447** | ||||||||
(-1.583) | (-1.783) | (-2.545) | (-1.442) | (-2.100) | (-2.151) | ||||||||
-0.194* | -0.0112 | 0.100 | 0.0149 | 0.0173 | |||||||||
(-1.885) | (-0.0951) | (0.958) | (0.156) | (0.181) | |||||||||
0.334*** | 0.398*** | 0.250*** | 0.267*** | ||||||||||
(3.025) | (4.084) | (2.759) | (2.769) | ||||||||||
-0.171*** | -0.204*** | -0.205*** | |||||||||||
(-6.799) | (-8.623) | (-8.634) | |||||||||||
0.156*** | 0.157*** | ||||||||||||
(6.527) | (6.532) | ||||||||||||
0.00827 | |||||||||||||
(0.516) | |||||||||||||
时间趋势项 | 0.0248*** | 0.0248*** | 0.0248*** | 0.0248*** | 0.0261*** | 0.0261*** | 0.0261*** | 0.0262*** | 0.0262*** | 0.0262*** | 0.0262*** | 0.0263*** | 0.0263*** |
(14.86) | (36.41) | (36.43) | (36.47) | (34.48) | (34.48) | (34.47) | (33.87) | (33.89) | (33.88) | (34.04) | (33.99) | (33.99) | |
常数 | -0.332*** | -0.131** | -0.605*** | -1.168*** | -1.254*** | -1.270*** | -1.237*** | -1.325*** | -0.793* | -2.411*** | -3.480*** | -1.794*** | -1.881*** |
(-22.46) | (-2.271) | (-4.646) | (-5.508) | (-5.110) | (-4.621) | (-3.392) | (-3.488) | (-1.681) | (-3.413) | (-5.432) | (-2.834) | (-2.869) | |
样本数 | 3 245 | 3 245 | 3 245 | 3 245 | 2 863 | 2 863 | 2 863 | 2 779 | 2 779 | 2 779 | 2 767 | 2 755 | 2 755 |
表6 不同规模的城市的实证结果Tab.6 Results of the econometric model for different sized cities |
中小城市 | 大城市 | 特大城市 | |
---|---|---|---|
0.0618*(1.939) | 0.0745**(2.548) | 0.0126(0.0642) | |
-0.0346(-1.410) | -0.0222(-0.832) | 0.138(0.512) | |
- | 0.0846***(3.059) | -0.0225(-0.259) | |
-0.0580***(-2.714) | -0.0223(-0.854) | -0.154(-0.637) | |
0.0584**(2.557) | 0.167***(7.455) | 0.272**(2.320) | |
0.0295(1.063) | 0.0266(0.953) | 0.358*(1.648) | |
-0.00303(-0.309) | -0.00900(-1.020) | -0.0119(-0.131) | |
0.0395*(1.741) | 0.0417*(1.955) | -0.410*(-1.786) | |
-0.0282(-0.638) | 0.00734(0.248) | -0.194(-0.681) | |
0.0149(1.146) | 0.0118(0.896) | 0.0168(0.161) | |
0.0484(1.153) | -0.142*(-1.829) | 1.183(1.376) | |
0.109**(1.972) | 0.106**(2.166) | 1.572**(2.464) | |
0.0550**(2.478) | 0.0408(1.197) | -0.290**(-2.545) | |
0.0227(1.389) | 0.0339(1.306) | 0.138(1.005) | |
-0.00708(-0.500) | -0.0103(-0.713) | -0.0884(-0.774) | |
常数 | -0.806**(-2.258) | -0.819**(-2.093) | -9.709**(-2.108) |
样本数 | 1 280 | 1 302 | 173 |
城市数 | 139 | 157 | 37 |
[1] |
黄解宇, 杨再斌. 金融集聚论:金融中心形成的理论与实践解析[M]. 北京: 中国社会科学出版社, 2006.
|
[2] |
樊向前, 范从来. 城市金融竞争力影响因素和评估体系研究——基于金融地理学的信息视角[J]. 江苏社会科学, 2016(2):37-46.
|
[3] |
李伟军. 地区行政层级、信息基础与金融集聚的路径选择——基于长三角城市群面板数据的实证分析[J]. 财经研究, 2011, 37(11):80-90.
|
[4] |
张浩然. 中国城市金融集聚的演进趋势与影响因素:区域异质性视角[J]. 广东财经大学学报, 2016, 31(3):56-63.
|
[5] |
任英华, 徐玲, 游万海. 金融集聚影响因素空间计量模型及其应用[J]. 数量经济技术经济研究, 2010(5):104-115.
|
[6] |
李大垒, 仲伟周. 金融产业集聚发展的空间交互影响研究——基于中国277个城市的空间计量分析[J]. 西南民族大学学报:人文社科版, 2016, 37(10):112-116.
|
[7] |
冯林, 罗怀敬, 李文正, 等. 县域金融集聚影响因素研究——基于空间杜宾模型和山东省县域数据的实证[J]. 农业技术经济, 2016(6):113-122.
|
[8] |
任以胜, 陆林, 朱道才. 区域协调发展战略下的行政边界研究框架[J]. 经济地理, 2019, 39(3):29-36,47.
|
[9] |
王成龙, 刘慧, 张梦天. 边界效应研究进展及展望[J]. 地理科学进展, 2016, 35(9):1 109-1 118.
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
茹乐峰, 苗长虹, 王海江. 我国中心城市金融集聚水平与空间格局研究[J]. 经济地理, 2014, 34(2):58-66.
|
[16] |
鲁平俊, 唐小飞, 王春国, 等. 城市群战略与资源集聚效率研究[J]. 宏观经济研究, 2015(5):150-159.
|
[17] |
戴永安, 张友祥. 中国城市群内部与外围的效率差异及其影响因素——基于DEA模型的分析[J]. 当代经济研究, 2017(1):64-71.
|
[18] |
余元春, 顾新, 陈一君. 跨区域技术转移边界效应研究[J]. 经济问题探索, 2016(5):44-50.
|
[19] |
王成龙, 刘慧, 张梦天. 基于结构方程模型的京津冀城市用地行政边界效应分析[J]. 自然资源学报, 2016, 31(7):1 127-1 137.
|
[20] |
巫强, 朱姝, 安修伯. 中国劳动力流动存在省际边界壁垒吗?——基于暂住证数据的实证研究[J]. 中国经济问题, 2016(6):3-13.
|
[21] |
崔兆财, 周向红. 中国省级行政边界处的非连续增长——基于DMSP/OLS夜间灯光数据的实证研究[J]. 经济问题探索, 2018(4):9-17.
|
[22] |
靳卫东, 刘敬富. 市场结构、行政壁垒与技术创新——来自中国高技术产业的经验证据[J]. 科技管理研究, 2019, 39(10):91-100.
|
[23] |
武英涛, 茆训诚, 张云. 长三角金融市场一体化中的行政边界壁垒测度——基于企业债务融资成本的实证研究[J]. 河海大学学报:哲学社会科学版, 2019, 21(5):41-50,106.
|
[24] |
王如玉, 王志高, 梁琦, 等. 金融集聚与城市层级[J]. 经济研究, 2019, 54(11):1-15.
|
[25] |
|
[26] |
江艇, 孙鲲鹏, 聂辉华. 城市级别、全要素生产率和资源错配[J]. 管理世界, 2018, 34(3):38-50,77,183.
|
[27] |
|
/
〈 |
|
〉 |