Influencing Factors and Spatial Pattern of Electronic Commerce Development Level in China at the Prefecture-Level City
Received date: 2018-12-21
Revised date: 2019-07-15
Online published: 2025-04-18
Based on the measurable data of e-commerce development level in 2016, the paper uses the methods of exploratory spatial data analysis and geographic weighted regression to explore the spatial differentiation pattern of Alibaba's e-commerce development level in 285 prefecture-level cities and analyze the influencing factors. The results show that: 1) Alibaba's e-commerce development level which is generally low and shows relatively obvious spatial difference, presents the decreasing characteristics from the eastern coastal region to the middle and western inland regions; 2) E-commerce has strong spatial autocorrelation and shows the diffusion characteristics of "big gathering and small dispersion". The characteristics of spatial agglomeration are obvious. the northwest and southwest regions are characterized by low-value agglomeration, and the east and south regions are characterized by high-value agglomeration; 3) Alibaba's e-commerce development level is affected by various aspects (economic development level, informatization degree, information infrastructure and so on) which are obvious spatial differences in the degree of influence. The population size has a certain negative restraining effect on the development level of e-commerce. The remaining influencing factors have positive effects on the development level of e-commerce. The influence degree ranking from the largest to the smallest is Internet popularization, transportation and logistics environment, urban human capital level, economic development level and information infrastructure.
GU Guofeng , XU Yinghang . Influencing Factors and Spatial Pattern of Electronic Commerce Development Level in China at the Prefecture-Level City[J]. Economic geography, 2019 , 39(10) : 123 -129 . DOI: 10.15957/j.cnki.jjdl.2019.10.016
[1] |
张滨, 刘小军, 陶章. 中国跨境电子商务物流现状及运作模式[J]. 中国流通经济, 2015(1):51-56.
|
[2] |
|
[3] |
|
[4] |
金虹, 林晓伟. 中国跨境电子商务的发展模式与策略建议[J]. 宏观经济研究, 2015(9):40-49.
|
[5] |
聂林海. “互联网+”时代的电子商务[J]. 中国流通经济, 2015(6):53-57.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
王贤文, 徐申萌. 中国C2C淘宝网络店铺的地理分布[J]. 地理科学进展, 2011, 30(12):1 564-1 569.
|
[10] |
马海涛, 李强, 刘静玉, 等. 中国淘宝镇的空间格局特征及其影响因素[J]. 经济地理, 2017, 37(9):118-124.
|
[11] |
路紫, 李晓楠, 杨丽花, 等. 基于邻域设施的中国大城市网络店铺的区位取向——以上海深圳、天津、北京四城市为例[J]. 地理学报, 2011, 66(6):813-820.
|
[12] |
汪明峰, 卢珊. 网上零售企业的空间组织研究——以“当当网”为例[J]. 地理研究, 2011, 30(6):965-976.
|
[13] |
余金艳, 刘卫东, 王亮. 基于时间距离的C2C电子商务虚拟商圈分析——以位于北京的淘宝网化妆品零售为例[J]. 地理科学, 2013, 68(10):1 380-1 388.
|
[14] |
席广亮, 甄峰, 张敏. 网络消费时空演变及区域联系特征研究——以京东商城为例[J]. 地理科学, 2015, 35(11):1 372-1 380.
|
[15] |
浩飞龙, 王彬燕, 王士君. 东北地区县域电子商务发展水平的空间差异及影响因素[J]. 地域研究与开发, 2016, 35(4):16-21.
|
[16] |
汤英汉. 中国电子商务发展水平及空间分异[J]. 经济地理, 2015, 35(5):9-14.
|
[17] |
|
[18] |
|
[19] |
汪明峰, 卢珊, 邱娟. 网上购物对城市零售业空间的影响:以书店为例[J]. 经济地理, 2010, 30(11):1 835-1 840.
|
[20] |
浩飞龙, 关皓明, 王士君. 中国城市电子商务发展水平空间分布特征及影响因素[J]. 经济地理, 2016, 36(2):1-10.
|
[21] |
|
[22] |
孟斌, 张景秋, 王劲峰, 等. 空间分析方法在房地产市场研究中的应用——以北京市为例[J]. 地理研究, 2005, 24(6):956-964.
|
[23] |
张凌云, 李松, 张洁, 等. 基于空间自相关的乌鲁木齐市民族居住格局研究[J]. 干旱区资源与环境, 2014, 28(3):50-56.
|
[24] |
庞瑞秋, 腾飞, 魏冶. 基于地理加权回归的吉林省人口城镇化动力机制分析[J]. 地理科学, 2014, 34(10):1 210-1 217.
|
[25] |
|
/
〈 |
|
〉 |