Measuring Street Layout’s Spatio-Temporal Effects on Housing Price Based on GWR and sDNA Model: The Case Study of Guangzhou

  • GU Hengyu ,
  • SHEN Tiyan ,
  • ZHOU Lin ,
  • CHEN Huiling ,
  • XIAO Fan
Expand
  • 1. School of Government,Peking University,Beijing 100871,China;
    2. School of architecture,Tsinghua University,Beijing 100084,China;
    3. School of Geography and Planning,Sun Yat-sen University,Guangzhou 510275,Guangdong,China;
    4. School of Geography,South China Normal University,Guangzhou 510631,Guangdong,China

Received date: 2017-06-23

  Revised date: 2017-11-23

  Online published: 2025-04-02

Abstract

In this paper, a network-based hedonic model (NLHM) is proposed based on geographically weighted regression (GWR) and extended space syntax (sDNA), which improves the traditional hedonic price model. Using NLHM, we focus on the spatio-temporal effects of street layout on the housing price in Guangzhou from 2014-2015. Results provide the following conclusions. (1) If we don’t consider the effect of road network, variables like subway, property management fees and whether fine decoration or not will exert a significant positive effect on housing price. (2) The central area of Guangzhou is mainly located in the foreground network core of closeness and betweenness, while the suburban area is located in the background network core. (3) There is a positive correlation between closeness and hosing price, whereas a negative correlation is shown between betweenness and hosing price. The influence of closeness on hosing price is greater than that of betweenness, and the two parameters’ influence coefficients will decrease if analysis radius increases. (4) The spatial patterns of closeness in different analysis radius illustrate a similar characteristic that closeness is high in suburban area and low in central area, while the spatial patterns of betweenness depict distinctive characteristics in different radius, for instance, the central area demonstrates high value and low value in local scale radius and global scale radius respectively. (5) The coefficient of subway variable decreases with the increase of analysis radius, while the variation of other variables’ coefficients (e.g. property management fees, the ratio of parking, whether fine decoration or not) is smaller.

Cite this article

GU Hengyu , SHEN Tiyan , ZHOU Lin , CHEN Huiling , XIAO Fan . Measuring Street Layout’s Spatio-Temporal Effects on Housing Price Based on GWR and sDNA Model: The Case Study of Guangzhou[J]. Economic geography, 2018 , 38(3) : 82 -91 . DOI: 10.15957/j.cnki.jjdl.2018.03.010

References

[1] Batty M.Accessibility:in search of a unified theory[J]. Envi-ronment and Planning B:Planning and Design.,2009,36(2):191-194.
[2] Alastair Adair,Stanley McGreal,Austin Smyth,et al. House Prices and Accessibility:The Testing of Relationships within the Belfast Urban Area[J]. Housing Studies,2000,15(5):699-716.
[3] 靳诚,陆玉麒,张莉,等. 基于路网结构的旅游景点可达性分析——以南京市区为例[J]. 地理研究,2009(1):246-258.
[4] Yang X,Orford S,Webster C J.Urban configuration,accessibili-ty,and property prices:a case study of Cardiff,Wales[J]. Environment and Planning B:Planning and Design,2016,42(1):1-22.
[5] Matthews J W,Turnbull G K.Neighborhood Street Layout and Property Value:The Interaction of Accessibility and Land Use Mix[J]. The Journal of Real Estate Finance and Economics,2007,35(2):111-141.
[6] Shen Y,Karimi K.The economic value of streets:mix-scale spatio-functional interaction and housing price patterns[J]. Applied Geography,2017,79:187-202.
[7] Law S.Defining Street-based Local Area and measuring its ef-fect on house price using a hedonic price approach:The case study of Metropolitan London[J]. Cities,2017,60:166-179.
[8] 肖扬,李志刚,宋小冬. 道路网络结构对住宅价格的影响机制——基于“经典”拓扑的空间句法,以南京为例[J]. 城市发展研究,2015(9):6-11.
[9] 杨瑛,李同昇,冯小杰. 西安市主城区居住空间住宅价格分布格局与驱动机制[J]. 地域研究与开发,2015,34(5):68-74.
[10] 陶伟,古恒宇,张良,等. 句法视角下城市道路交通的预测研究——以广州市人民路高架桥拆除问题为例[J]. 华南师范大学学报:自然科学版,2017(1):80-86.
[11] 刘洪玉,郑思齐. 城市与房地产经济学[M]. 北京:中国建筑工业出版社,2007:64.
[12] 张静,张丽芳,濮励杰,等. 基于GWR模型的城市住宅地价的时空演变研究——以江苏省为例[J]. 地理科学,2012,32(7):828-834.
[13] 吕萍,甄辉. 基于GWR模型的北京市住宅用地价格影响因素及其空间规律研究[J]. 经济地理,2010,30(3):472-478.
[14] 曹天邦,黄克龙,李剑波,等. 基于GWR的南京市住宅地价空间分异及演变[J]. 地理研究,2013,32(12):2 324-2 333.
[15] 陶伟,古恒宇,陈昊楠. 路网形态对城市酒店业空间布局的影响研究:广州案例[J]. 旅游学刊,2015,30(10):99-108.
[16] 李郇,符文颖. 城市政府基础设施投资在住宅市场的资本化考察——基于广州价格数据的Hedonic模型构建[J]. 地理研究,2010,29(7):1 269-1 280.
[17] 杨开忠. 区域经济学概念、分支与学派[J]. 经济学动态,2008(1):55-60.
[18] Oliveira S,Pereira J M C,San-Miguel-Ayanz J,et al. Explor-ing the spatial patterns of fire density in Southern Europe using Geographically Weighted Regression[J]. Applied Geography,2014,51:143-157.
[19] Fotheringham A S,Brunsdon C,Charlton M.Geographically weighted regression:The analysis of spatially varying relationships[M]. England:Wiley,2003.
[20] Fotheringham A S,Kelly M H,Charlton M.The demographic impacts of the Irish famine:towards a greater geographical understanding[J]. Transactions of the Institute of British Geographers,2013,38(2):221-237.
Outlines

/