Impact of Bi-directional Population Migration on County-Level Urbanization and Its Spatial Gradient
Received date: 2021-03-27
Revised date: 2021-08-04
Online published: 2025-04-01
The adjustment of the dimension and depth of population agglomeration will reflect the change of urban-rural spatial distribution pattern. Based on the communiqués of the 5th and the 6th National Population Census,and the data from 2018 China Migrants Dynamic Survey (CMDS2018),this paper identifies and differentiates population inflow and outflow at county level,and uses a multi-scale geographical weighted regression model to investigate the heterogeneous spatial effects of bi-directional population flow on county urbanization. The results show that the spatial agglomeration of population flow has an obvious "node" feature,and the process of agglomeration from self-dispersed districts to urban districts is obvious. The bidirectional distribution process of population inflow and outflow has different spatial non-stationary effects on urbanization,and the urbanization effect has a significant spatial gradient. The lack of labor force reflected by population burden is an important mechanism channel that restricts county urbanization. The process of population distribution has an important influence on urbanization through the adjustment mechanism of dependency ratio. The level of economic development,the degree of non-agricultural development and the population density are also important bases for the realization of urbanization. Municipal districts are still the central regions of urbanization and have stronger population absorption capacity than counties. Therefore,which path to choose for urbanization in the future is one of the important issues for the development of counties and districts.
LI Yuwen , HOU Xinshuo , LI Wurong . Impact of Bi-directional Population Migration on County-Level Urbanization and Its Spatial Gradient[J]. Economic geography, 2021 , 41(9) : 91 -102 . DOI: 10.15957/j.cnki.jjdl.2021.09.010
表1 人口流动作用的全局回归结果Tab.1 Global regression results of population mobility effects |
变量 | 2000 | 2010 | 2018 | |||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |||
nonres | -0.017(0.020) | -0.041**(0.020) | 0.018**(0.009) | 0.024***(0.009) | 0.062***(0.009) | 0.058***(0.010) | ||
resem | 0.208***(0.045) | -0.047**(0.024) | 0.010***(0.004) | |||||
edr | 7.679***(0.630) | 8.322***(0.643) | 2.917***(0.137) | 2.862***(0.139) | 0.000***(0.000) | 0.000***(0.000) | ||
nonag | 0.343***(0.021) | 0.333***(0.021) | 0.289***(0.022) | 0.289***(0.022) | 0.001(0.002) | 0.001(0.002) | ||
fia | 0.013(0.010) | -0.011(0.011) | 0.000(0.001) | 0.001(0.002) | 0.000(0.000) | 0.000(0.000) | ||
pden | 0.005***(0.001) | 0.004***(0.001) | 0.007***(0.001) | 0.007***(0.001) | 0.003**(0.001) | 0.003**(0.001) | ||
citydm | 23.461***(0.992) | 23.087***(0.991) | 17.185***(0.816) | 17.206***(0.816) | 25.125***(1.278) | 23.707***(1.393) | ||
截距项 | -5.170***(1.238) | -5.575***(1.235) | 3.065*(1.615) | 3.497**(1.629) | 35.281***(0.510) | 34.445***(0.598) | ||
样本量 | 2 304 | 2 304 | 2 304 | 2 304 | 2 275 | 2 262 | ||
R2 | 0.586 | 0.590 | 0.627 | 0.628 | 0.502 | 0.504 | ||
变量标准化 | Yes | Yes | Yes | Yes | Yes | Yes | ||
控制变量 | Yes | Yes | Yes | Yes | Yes | Yes | ||
F检验 | 541.768 | 471.472 | 643.440 | 552.800 | 381.792 | 327.737 | ||
平均VIF | 2.0626 | 2.292 | 2.068 | 2.336 | 1.444 | 1.536 |
注:***p<0.01,**p<0.05,*p<0.1,括号内为标准误。 |
表2 包含交乘项的MGWR参数估计结果汇总统计Tab.2 Summary statistics of MGWR parameter estimation results with interactive items |
变量名 | (1) 带宽 | (2) 均值 | (3) 标准误 | (4) 最小值 | (5) 最大值 | (6) p≤0.01 | (7) p≤0.05 | (8) p≤0.10 | (9) + (%) | (10) - (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 截距项 | 46 | -0.038 | 0.269 | -0.501 | 1.046 | 35.55 | 48.70 | 57.90 | 38.59 | 61.41 |
nonres | 402 | -0.359 | 0.235 | -0.817 | 0.151 | 0.00 | 9.85 | 10.50 | 0.00 | 100.00 | |
resem | 394 | -0.983 | 0.199 | -1.191 | -0.504 | 0.00 | 9.46 | 41.97 | 0.00 | 100.00 | |
edr | 386 | 0.181 | 0.114 | 0.031 | 0.437 | 63.98 | 81.42 | 84.81 | 100.00 | 0.00 | |
nonag | 157 | 0.227 | 0.103 | -0.098 | 0.492 | 85.29 | 93.45 | 94.23 | 97.68 | 2.32 | |
fia | 672 | 0.124 | 0.058 | 0.035 | 0.221 | 0.61 | 32.42 | 38.72 | 100.00 | 0.00 | |
pden | 63 | 0.214 | 0.185 | -0.650 | 0.824 | 44.79 | 62.15 | 68.88 | 98.67 | 1.33 | |
city | 74 | 0.268 | 0.161 | -0.101 | 0.693 | 68.97 | 78.21 | 82.20 | 100.00 | 0.00 | |
depr | 369 | -0.374 | 0.100 | -0.639 | -0.215 | 100.00 | 100.00 | 100.00 | 0.00 | 100.00 | |
nondepr | 331 | 0.508 | 0.418 | 0.056 | 1.332 | 0.00 | 4.95 | 23.35 | 100.00 | 0.00 | |
resdepr | 84 | 0.772 | 0.398 | -0.185 | 1.534 | 0.00 | 1.74 | 22.09 | 100.00 | 0.00 | |
2010 | 截距项 | 78 | -0.049 | 0.313 | -1.022 | 0.657 | 44.53 | 61.15 | 69.44 | 44.07 | 55.93 |
nonres | 50 | -6.444 | 10.463 | -52.495 | 1.767 | 25.74 | 30.69 | 41.97 | 0.00 | 100.00 | |
resem | 60 | -0.899 | 0.976 | -3.052 | 1.434 | 19.79 | 36.37 | 46.48 | 0.00 | 100.00 | |
edr | 1 389 | 0.177 | 0.031 | 0.132 | 0.234 | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 | |
nonag | 43 | 0.232 | 0.155 | -0.280 | 1.037 | 29.99 | 51.30 | 62.67 | 98.14 | 1.86 | |
fia | 74 | 0.028 | 0.470 | -1.431 | 1.474 | 12.67 | 20.75 | 26.61 | 39.96 | 60.04 | |
pden | 113 | 0.208 | 0.214 | -0.529 | 0.622 | 65.10 | 77.95 | 83.90 | 92.20 | 7.80 | |
city | 122 | 0.207 | 0.143 | -0.060 | 0.537 | 57.86 | 68.40 | 73.35 | 100.00 | 0.00 | |
depr | 301 | -0.312 | 0.104 | -0.732 | -0.108 | 96.53 | 100.00 | 100.00 | 0.00 | 100.00 | |
nondepr | 51 | 6.128 | 8.467 | -0.261 | 41.889 | 32.68 | 43.40 | 54.43 | 100.00 | 0.00 | |
resdepr | 65 | 0.463 | 0.741 | -1.544 | 1.978 | 7.42 | 22.70 | 37.41 | 74.76 | 25.24 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
王桂新. 新中国人口迁移70年:机制、过程与发展[J]. 中国人口科学, 2019(5):2-14,126.
|
[6] |
罗元青, 刘珺, 胡民. 基于二元经济转换的整体视角探寻农业转移人口市民化动力[J]. 农村经济, 2019(8):1-9.
|
[7] |
陈丙欣, 叶裕民. 中国流动人口的主要特征及对中国城市化的影响[J]. 城市问题, 2013(3):4-10.
|
[8] |
王新贤, 高向东. 中国流动人口分布演变及其对城镇化的影响——基于省际、省内流动的对比分析[J]. 地理科学, 2019, 39(12):1866-1874.
|
[9] |
颜咏华, 郭志仪. 中国人口流动迁移对城市化进程影响的实证分析[J]. 中国人口·资源与环境, 2015(10):103-110.
|
[10] |
段成荣, 吕利丹, 邹湘江. 当前我国流动人口面临的主要问题和对策——基于2010年第六次全国人口普查数据的分析[J]. 人口研究, 2013, 37(2):17-24.
|
[11] |
梁书民. 中国城镇化区域差异的原因分析与发展对策[J]. 人口与发展, 2015, 21(2):2-13,49.
|
[12] |
肖金成, 洪晗. 我国省际人口流动格局演变趋势及其城镇化效应[J]. 城市问题, 2020(8):22-32.
|
[13] |
李海波, 陈政, 欧沙. 县域城镇化与人口回流耦合关系研究——基于湖南省88个县(市)数据的分析[J]. 经济地理, 2019(11):25-32.
|
[14] |
刘涛, 刘嘉杰, 曹广忠. 中国城市人口户籍迁移的估算及时空特征——新型城镇化的落户政策导向[J]. 地理科学, 2021(4):553-561.
|
[15] |
苏艺, 陈井安. 县域经济发展的历史演变,经验与展望——以四川省为例[J]. 农村经济, 2020(5):64-71.
|
[16] |
刘涛, 齐元静, 曹广忠. 中国流动人口空间格局演变机制及城镇化效应——基于2000和2010年人口普查分县数据的分析[J]. 地理学报, 2015(4):567-581.
|
[17] |
高更和, 王玉婵, 徐祖牧, 等. 农民工回流务工区位研究——以河南省45个村为例[J]. 地理科学进展, 2020(12):2083-2093.
|
[18] |
段成荣, 孙玉晶. 我国流动人口统计口径的历史变动[J]. 人口研究, 2006(4):70-76.
|
[19] |
于涛方. 中国城市人口流动增长的空间类型及影响因素[J]. 中国人口科学, 2012(4):47-58,111-112.
|
[20] |
张车伟, 蔡翼飞. 中国城镇化格局变动与人口合理分布[J]. 中国人口科学, 2012(6):44-57.
|
[21] |
|
[22] |
沈体雁, 于瀚辰, 周麟, 等. 北京市二手住宅价格影响机制——基于多尺度地理加权回归模型(MGWR)的研究[J]. 经济地理, 2020, 40(3):75-83.
|
[23] |
|
[24] |
|
[25] |
|
[26] |
刘欢, 邓宏兵, 谢伟伟. 长江经济带市域人口城镇化的时空特征及影响因素[J]. 经济地理, 2017, 37(3):55-62.
|
[27] |
黄勤, 曹汐. 产业转型升级在新型城镇化进程中的作用[J]. 城市问题, 2016(7):64-68,94.
|
[28] |
白南生, 李靖. 城市化与中国农村劳动力流动问题研究[J]. 中国人口科学, 2008(4):2-10,95.
|
[29] |
李长亮. 中国省域新型城镇化影响因素的空间计量分析[J]. 经济问题, 2015(5):111-116.
|
[30] |
王春杨, 兰宗敏, 张超, 等. 高铁建设、人力资本迁移与区域创新[J]. 中国工业经济, 2020(12):102-120.
|
[31] |
王智勇. 当前人口流动的主要特征及对城市化的影响[J]. 人民论坛, 2021(17):74-77.
|
[32] |
聂伟, 陆军. 撤县设区改革与地级市经济增长——整县设区和拆县设区的比较研究[J]. 经济问题探索, 2019(2):95-101.
|
[33] |
|
[34] |
杨玲, 张新平. 人口年龄结构、人口迁移与东北经济增长[J]. 中国人口·资源与环境, 2016, 26(9):28-35.
|
/
〈 |
|
〉 |