Spatial Distribution Characteristics and Influencing Factors of Chinese Traditional Villages
Received date: 2019-06-28
Revised date: 2019-09-08
Online published: 2025-04-01
Villages have been the main carriers for the implementation of the rural revitalization strategy; it is of great value to recognize the spatial distribution of traditional villages and its influencing factors for the inheritance and development of traditional villages. Taking traditional villages as the object,the study adopted the methodology of kernel density identifying cores and sub-cores,constructed the research methodology of influencing factors of "Grid Analysis-Spatial Autocorrelation-Geographical weighted regression" and carried out practical analysis. The findings are as follows:first,from the perspective of larger geographical pattern,traditional villages are mainly distributed in the east of "Hu Huanyong Line",the second and third steps of the terrain of China,the area where the average annual precipitation covering more than 400mm,subtropical monsoon climate zone and temperate monsoon climate zone; from administrative division aspect,the junction zone of some provinces and prefecture-level cities is the density core of traditional villages; Second,the results of GWR model show that:in terms of topographic factors,the lower elevation of the second step is and the higher elevation of the third step is,the more concentrated the traditional villages are; regarding the ecological factors,there are two features in the main agricultural products areas or eco-environmental protected areas,the better the ecological environment is,the more intensive or the more dispersed traditional villages are; as far as population factors are concerned,in most areas of the west "Hu Huanyong Line",the denser the population is,the more concentrated the traditional villages are,while the eastern area of "Hu Huanyong Line" is the opposite; as for economic factors,traditional villages tend to gather in most areas of the central and western regions with lower levels of economic development,while traditional villages are prone to be scattered in the eastern regions with overall high levels of economic development; and the factors of traffic and cities also have two-sides characteristics in the spatial distribution of traditional villages in different regions. Generally speaking,the regression coefficients of each geographical element have positive and negative values,ratio differences of positive and negative value and spatial differences between high and low values,and reflect the direction,degree and scope of each element on the spatial distribution of traditional villages. Based on the characteristics of spatial distribution of traditional villages and the spatial difference of geographical factors' regression coefficient,some suggestions for the development and utilization of traditional villages are put forward.
LI Jiangsu , WANG Xiaorui , LI Xiaojian . Spatial Distribution Characteristics and Influencing Factors of Chinese Traditional Villages[J]. Economic geography, 2020 , 40(2) : 143 -153 . DOI: 10.15957/j.cnki.jjdl.2020.02.016
表1 传统村落空间分布影响因素分析指标及计算方法Tab.1 Influencing factors’ index and calculation method of the spatial distribution of Traditional Villages |
类型 | 符号 | 指标 | 计算方法 |
---|---|---|---|
变量 | Y | 传统村落集中指数 | 各格网中传统村落数量/格网面积 |
自变量 | X1 | 地形因素 | 各格网高程均值 |
X2 | 生态因素 | 各格网的林地、草地、水域总面积/格网面积 | |
X3 | 人口因素 | 各格网人口密度均值 | |
X4 | 经济因素 | 各格网GDP密度均值 | |
X5 | 交通因素 | 各格网道路总长/格网面积 | |
X6 | 城市因素 | 各格网县级以上城市数量 |
表2 中国传统村落空间自相关全域分析结果Tab.2 The results of spatial autocorrelation analysis of Chinese Traditional Villages |
项目 | 距离宽度(60 km) | 距离宽度(110 km) |
---|---|---|
Moran's I | 0.574429 | 0.493416 |
Expected Index | -0.000252 | -0.000252 |
Variance | 0.000126 | 0.000045 |
Z Score | 51.270064 | 73.774587 |
P Value | 0.000000 | 0.000000 |
表3 中国传统村落影响因素地理变量测试结果Tab.3 Results of geographical variability tests of influencing factors in Chinese Traditional Villages |
变量 | F | DOF for F | test | DIFF of Criterion |
---|---|---|---|---|
Eco | 2.290540 | 107.465 | 3 334.102 | -0.022326 |
Gdp | 2.125811 | 65.210 | 3 334.102 | -19.963998 |
Dem | 5.137285 | 76.874 | 3 334.102 | -231.154650 |
Pop | 1.428429 | 70.760 | 3 334.102 | -78.307927 |
Trans | 1.687927 | 111.014 | 3 334.102 | -88.155781 |
City | 2.561710 | 109.363 | 3 334.102 | -19.554633 |
表4 中国传统村落全局回归参数结果Tab.4 Global regression parameters result of Chinese Traditional Villages |
序号 | 参数 | 值 |
---|---|---|
1 | Residual sum of squares | 125 707.760938 |
2 | Number of parameters | 6 |
3 | ML based global sigma estimate | 5.624990 |
4 | Unbiased global sigma estimate | 5.629242 |
5 | -2 log-likelihood | 24 999.369259 |
6 | Classic AIC | 25 013.369259 |
7 | AICc | 25 013.397506 |
8 | BIC/MDL | 25 057.380196 |
9 | CV | 31.738739 |
10 | R square | 0.062722 |
11 | Adjusted R square | 0.061304 |
表5 中国传统村落地理加权回归参数结果Tab.5 Geographically weighted regression result of Chinese Traditional Villages |
带宽 99 567.348671(m) | ||
---|---|---|
坐标 | Min Max Range X-coord -2 550 321.775990 2 053 035.952590 4 603 357.728580 Y-coord 2 397 794.387370 6 342 106.345800 3 944 311.958430 | |
序号 | 参数 | 值 |
1 | Residual sum of squares | 52 678.900526 |
2 | Effective number of parameters [model:trace(S)] | 638.897917 |
3 | Effective number of parameters [variance:trace(S'S)] | 401.469679 |
4 | Degree of freedom [model:n-trace(S)] | 3 334.102083 |
5 | Degree of freedom [residual:n-2trace(S)+trace(S'S)] | 3 096.673845 |
6 | ML based sigma estimate | 3.641322 |
7 | Unbiased sigma estimate | 4.124493 |
8 | -2 log-likelihood | 21 543.872971 |
9 | Classic AIC | 22 823.668805 |
10 | AICc | 23 069.825274 |
11 | BIC/MDL | 26 846.884103 |
12 | CV | 19.272633 |
13 | R square | 0.607226 |
14 | Adjusted R square | 0.496039 |
图3 中国传统村落空间分布影响要素格网回归系数正负值比重Fig.3 The positive and negative ratio of regression coefficient of influencing factors on spatial distribution of Chinese Traditional Villages |
[1] |
李伯华, 刘沛林, 窦银娣, 等. 中国传统村落人居环境转型发展及其研究进展[J]. 地理研究, 2017, 36(10):1 886-1 900.
|
[2] |
王艳想, 李帅, 酒江涛, 等. 河南省传统村落空间分布特征及影响因素研究[J]. 中国农业资源与区划, 2019, 40(2):129-136,204.
|
[3] |
孙军涛, 牛俊杰, 张侃侃, 等. 山西省传统村落空间分布格局及影响因素研究[J]. 人文地理, 2017, 32(3):102-107.
|
[4] |
佟玉权, 龙花楼. 贵州民族传统村落的空间分异因素[J]. 经济地理, 2015, 35(3):133-137,93.
|
[5] |
李咪, 芮旸, 王成新, 等. 传统村落的空间分布及影响因素研究——以吴越文化区为例[J]. 长江流域资源与环境, 2018, 27(8):1 693-1 702.
|
[6] |
|
[7] |
殷永达. 论徽州传统村落水口模式及文化内涵[J]. 东南文化, 1991(2):174-177.
|
[8] |
刘沛林, 董双双. 中国古村落景观的空间意象研究[J]. 地理研究, 1998, 17(1):32-39.
|
[9] |
胡最, 郑文武, 刘沛林, 等. 湖南省传统聚落景观基因组图谱的空间形态与结构特征[J]. 地理学报, 2018, 73(2):317-332.
|
[10] |
陶伟, 陈红叶, 林杰勇. 句法视角下广州传统村落空间形态及认知研究[J]. 地理学报, 2013, 68(2):209-218.
|
[11] |
杨立国, 刘沛林, 林琳. 传统村落景观基因在地方认同建构中的作用效应——以侗族村寨为例[J]. 地理科学, 2015, 35(5):593-598.
|
[12] |
翟洲燕, 李同昇, 常芳, 等. 陕西传统村落文化遗产景观基因识别[J]. 地理科学进展, 2017, 36(9):1 067-1 080.
|
[13] |
姚梦园, 晏实江, 吴艳兰. 基于理想生态系统模式与三维景观指数的徽派村落空间特征解析——以呈坎为例[J]. 应用生态学报, 2016, 27(12):3 905-3 912.
|
[14] |
邹君, 刘媛, 谭芳慧, 等. 传统村落景观脆弱性及其定量评价——以湖南省新田县为例[J]. 地理科学, 2018, 38(8):1 292-1 300.
|
[15] |
杨立国, 龙花楼, 刘沛林, 等. 传统村落保护度评价体系及其实证研究——以湖南省首批中国传统村落为例[J]. 人文地理, 2018, 33(3):121-128,151.
|
[16] |
刘军民, 庄袁俊琦. 传统村落文化脱域与保护传承研究[J]. 城市发展研究, 2017, 24(11):6-9.
|
[17] |
张松. 作为人居形式的传统村落及其整体性保护[J]. 城市规划学刊, 2017(2):44-49.
|
[18] |
唐承财, 郑倩倩, 王晓迪, 等. 基于两山理论的传统村落旅游业绿色发展模式探讨[J]. 干旱区资源与环境, 2019, 33(2):203-208.
|
[19] |
魏峰群. 传统古村落保护与旅游开发的混合效应模式研究[J]. 干旱区资源与环境, 2010, 24(10):197-200.
|
[20] |
|
[21] |
吴吉林, 周春山, 谢文海. 传统村落农户乡村旅游适应性评价与影响因素研究——基于湘西州6个村落的调查[J]. 地理科学, 2018, 38(5):755-763.
|
[22] |
吴吉林, 刘水良, 周春山. 乡村旅游发展背景下传统村落农户适应性研究——以张家界4个村为例[J]. 经济地理, 2017, 37(12):232-240.
|
[23] |
李伯华, 曾灿, 窦银娣, 等. 基于“三生”空间的传统村落人居环境演变及驱动机制——以湖南江永县兰溪村为例[J]. 地理科学进展, 2018, 37(5):677-687.
|
[24] |
康璟瑶, 章锦河, 胡欢, 等. 中国传统村落空间分布特征分析[J]. 地理科学进展, 2016, 35(7):839-850.
|
[25] |
余亮, 孟晓丽. 基于地理格网分级法提取的中国传统村落空间分布[J]. 地理科学进展, 2016, 35(11):1 388-1 396.
|
[26] |
焦胜, 郑志明, 徐峰, 等. 传统村落分布的“边缘化”特征——以湖南省为例[J]. 地理研究, 2016, 35(8):1 525-1 534.
|
[27] |
冯亚芬, 俞万源, 雷汝林. 广东省传统村落空间分布特征及影响因素研究[J]. 地理科学, 2017, 37(2):236-243.
|
[28] |
金江磊, 闫浩文, 杨树文, 等. 甘肃省传统村落的空间分异格局研究[J]. 测绘科学, 2018, 43(12):28-33.
|
[29] |
李伯华, 尹莎, 刘沛林, 等. 湖南省传统村落空间分布特征及影响因素分析[J]. 经济地理, 2015, 35(2):189-194.
|
[30] |
陈君子, 刘大均, 周勇, 等. 嘉陵江流域传统村落空间分布及成因分析[J]. 经济地理, 2018, 38(2):148-153.
|
[31] |
关中美, 王同文, 职晓晓. 中原经济区传统村落分布的时空格局及其成因[J]. 经济地理, 2017, 37(9):225-232.
|
[32] |
梁步青, 肖大威, 陶金, 等. 赣州客家传统村落分布的时空格局与演化[J]. 经济地理, 2018, 38(8):196-203.
|
[33] |
李久林, 储金龙, 叶家珏, 等. 古徽州传统村落空间演化特征及驱动机制[J]. 经济地理, 2018, 38(12):153-165.
|
[34] |
卢松, 张小军, 张业臣. 徽州传统村落的时空分布及其影响因素[J]. 地理科学, 2018, 38(10):1 690-1 698.
|
[35] |
柳林, 姜超, 周素红, 等. 城市入室盗窃犯罪的多尺度时空格局分析——基于中国H市DP半岛的案例研究[J]. 地理研究, 2017, 36(12):2 451-2 464.
|
[36] |
王静, 杨小唤, 石瑞香. 山东省人口空间分布格局的多尺度分析[J]. 地理科学进展, 2012, 31(2):176-182.
|
[37] |
刘振锋, 薛东前, 庄元, 等. 文化产业空间尺度效应研究——以西安市为例[J]. 地理研究, 2016, 35(10):1 963-1 972.
|
[38] |
倪印锋, 王明利. 中国牧草产业地理集聚特征及影响因素[J]. 经济地理, 2018, 38(6):142-150.
|
[39] |
|
[40] |
江振蓝, 杨玉盛, 沙晋明. GWR模型在土壤重金属高光谱预测中的应用[J]. 地理学报, 2017, 72(3):533-544.
|
[41] |
胡宇娜, 梅林, 魏建国. 基于GWR模型的中国区域旅行社业效率空间分异及动力机制分析[J]. 地理科学, 2018, 38(1):107-113.
|
[42] |
|
[43] |
|
/
〈 |
|
〉 |