Integrated Identification and Spatial Differentiation Mechanism of Urban Built-up Area in Changsha-Zhuzhou-Xiangtan Urban Agglomeration Based on the Multi-source Big Data

Expand
  • 1. School of Architecture,Changsha University of Science & Technology,Changsha 410076,Hunan,China;
    2. Hunan City University Design and Research Institute Co., Ltd.,Changsha 410005,Hunan,China;
    3. School of Economics and Management,Wuhan University,Wuhan 430072,Hubei,China

Received date: 2023-05-15

  Revised date: 2023-10-13

  Online published: 2024-06-03

Abstract

Taking Changsha-Zhuzhou-Xiangtan urban agglomeration as the study area,this paper carries out the integrated identification of urban built-up areas of Changsha-Zhuzhou-Xiangtan urban agglomeration based on the multi-source big data such as Luojia-1 night light, POI and OSM road network,and uses Geodetector to analyzes the spatial differentiation mechanism of built-up areas' density and efficiency from six major aspects. The results show that: 1) Eight combination types It portrays the functional spatial layout of cities and towns in Changsha-Zhuzhou-Xiangtan urban agglomeration based on eight combination types from different dimensions. According to the integrated identification of multi-source data A1B1C1,it better realizes the complete and accurate extraction of built-up area information,which makes up for the shortcomings of single data identification or pairwise integration. The area of built-up area is 1890.19 km2,accounting for 6.73% of the total land area,and the spatial information is more comprehensive and suitable for the actual situation relative to the surface coverage remote sensing image interpretation. 2) The built-up area in cities and towns of Changsha-Zhuzhou-Xiangtan is characterized by the structure of "one main district and two sub-districts,multiple clusters and multiple nodes,axis-belt expanding",with obvious regional differences and spatial differentiation. The density differentiation at district and county scales shows an irregular circle structure,with low-value areas in the eastern,southern and western hilly areas of the urban agglomeration,the efficiency gradient shows the distribution pattern of "concentric circles + high in the north and low in the south". 3) The spatial differentiation mechanism of density and efficiency of urban built-up areas in Changsha-Zhuzhou-Xiangtan is complicated. Density differentiation is mainly affected by natural and transportation conditions,population and urbanization,economic development,investment and consumption. Efficiency differentiation is mainly affected by urbanization,economic structure and level,real estate development and investment,and people's livelihood services. The factor interactions of built-up area density and efficiency have the two-factor enhancement and nonlinear enhancement effects on both built-up area density and efficiency,and the enhancement effect on efficiency differentiation is more significant.

Cite this article

TANG Changchun, CHEN Jiaqi, XIE Yunfei, TANG Jialu, ZHOU Chulai . Integrated Identification and Spatial Differentiation Mechanism of Urban Built-up Area in Changsha-Zhuzhou-Xiangtan Urban Agglomeration Based on the Multi-source Big Data[J]. Economic geography, 2024 , 44(1) : 66 -76 . DOI: 10.15957/j.cnki.jjdl.2024.01.007

References

[1] 樊杰,周侃,盛科荣,等. 中国陆域综合功能区及其划分方案[J].中国科学:地球科学,2023,53(2):236-255.
[2] 华晨,洪祎丹,王颖芳,等. 城镇建成区概念与界定方法体系研究——以浙江德清市武康镇为例[J]. 城市规划学刊,2013(2):57-62.
[3] 关兴良,魏后凯,鲁莎莎,等. 中国城镇化进程中的空间集聚、机理及其科学问题[J]. 地理研究,2016,35(2):227-241.
[4] 姚士谋,陈振光,朱英明,等. 中国城市群[M]. 合肥:中国科学技术大学出版社,2006.
[5] 王海军,张彬,刘耀林,等. 基于重心—GTWR模型的京津冀城市群城镇扩展格局与驱动力多维解析[J]. 地理学报,2018,73(6):1076-1092.
[6] 潘竟虎,戴维丽. 1990—2010年中国主要城市空间形态变化特征[J]. 经济地理,2015,35(1):44-52.
[7] Dou Y,Liu Z,He C,et al.Urban land extraction using VIIRS nighttime light data:An evaluation of three popular methods[J]. Remote Sensing,2017,doi:10.3390/rs9020175.
[8] Getu K,Bhat H G.Analysis of spatio-temporal dynamics of urban sprawl and growth pattern using geospatial technologies and landscape metrics in Bahir Dar,Northwest Ethiopia[J]. Land Use Policy,2021,109:1-14.
[9] 周春山,叶昌东. 中国城市空间结构研究评述[J]. 地理科学进展,2013,32(2):1030-1038.
[10] 陆大道,陈明星. 关于“国家新型城镇化规划(2014-2020)”编制大背景的几点认识[J]. 地理学报,2015,70(2):179-185.
[11] Friedmann J.Four theses in the study of China's urbanization[J]. International Journal of Urban and Regional Research,2006,30(2):440-451.
[12] 陆大道. 地理学关于城镇化领域的研究内容框架[J]. 地理科学,2013,33(8):897-901.
[13] 方创琳. 中国新型城镇化高质量发展的规律性与重点方向[J]. 地理研究,2019,38(1):13-22.
[14] 陈明星,叶超,陆大道,等. 中国特色新型城镇化理论内涵的认知与建构[J]. 地理学报,2019,74(4):633-647.
[15] 樊杰,郭锐. 新型城镇化前置条件与驱动机制的重新认知[J]. 地理研究,2019,38(1):3-12.
[16] 陆大道. 我国的城镇化进程与空间扩张[J]. 城市规划学刊,2007(4):47-52.
[17] 刘天宝,马嘉铭. 空间生产理论在中国城镇化研究中的应用进展与展望[J]. 地理科学进展,2023,42(5):998-1011.
[18] Fang C L,Yu D L.Urban agglomeration:An evolving concept of an emerging phenomenon[J]. Landscape and Urban Planning,2017,162:126-136.
[19] 陈颖彪,郑子豪,吴志峰,等. 夜间灯光遥感数据应用综述和展望[J]. 地理科学进展,2019,38(2):205-223.
[20] Huang X,Schneider A,Friedl M A.Mapping sub-pixel urban expansion in China using MODIS and DMSP/OLS nighttime lights[J]. Remote Sensing of Environment,2016,175:92-108.
[21] 许泽宁,高晓路. 基于电子地图兴趣点的城市建成区边界识别方法[J]. 地理学报,2016,71(6):928-939.
[22] Ballatore A,Bertolotto M,Wilson D C.Geographic knowledge extraction and Semantic similarity in OpenStreetMap[J]. Knowledge & Information Systems,2013,37(1):61-81.
[23] 于丙辰,刘玉轩,陈刚. 基于夜光遥感与POI数据空间耦合关系的南海港口城市空间结构研究[J]. 地球信息科学学报,2018,20(6):854-861.
[24] 丁彦文,许捍卫,汪成昊. 融合OSM路网与POI数据的城市功能区识别研究[J]. 地理与地理信息科学,2020,36(4):57-63.
[25] Xue B,Xiao X,Li J Z,et al.Multi-source data-driven identification of urban functional areas:A case of Shenyang,China[J]. Chinese Geographical Science,2023,33(1):21-35.
[26] 方创琳. 城市群空间范围识别标准的研究进展与基本判断[J]. 城市规划学刊,2009,182(4):1-6.
[27] Zhen F,Cao Y,Qin X,et al.Delineation of an urban agglomeration boundary based on Sina Weibo microblog ‘check in’ data:A case study of the Yangtze River Delta[J]. Cities,2017,60:180-191.
[28] 何春阳,史培军,李景刚,等. 基于DMSP/OLS夜间灯光数据和统计数据的中国大陆20世纪90年代城市化空间过程重建研究[J]. 科学通报,2006(7):856-861.
[29] 吴欣昕,刘小平,梁迅,等. FLUS-UGB多情景模拟的珠江三角洲城市增长边界划定[J]. 地球信息科学学报,2018,20(4):532-542.
[30] 王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116-134.
[31] 李进涛,刘彦随,杨园园,等. 1985—2015年京津冀地区城市建设用地时空演变特征及驱动因素研究[J]. 地理研究,2018,37(1):37-52.
[32] 刘彦随,杨忍. 中国县域城镇化的空间特征与形成机理[J]. 地理学报,2012,67(8):1011-1020.
[33] 唐常春,孙威. 长江流域国土空间开发适宜性综合评价[J]. 地理学报,2012,67(12):1587-1598.
[34] 梁若冰,蓝天. 行政区扩张、土地出让依赖与城市发展质量——基于卫星灯光数据的准实验研究[J]. 经济学(季刊),2023,23(3):1019-1034.
Outlines

/