Self-driving tour has become an important part of domestic tourism market. The research on the travel space distance and destination choice of self-driving tour can provide reference for the prediction of self-driving tour and the construction of self-driving tour camp,and reveals the spatial behavior and rule of self-driving tour. Based on the track data of self-drive tour from 2014 to 2022,this paper analyzes the spatial distance and destination choice of self-drive tourists in Beijing by GIS spatial analysis. The results show that: 1) The travel space of self-driving tour in Beijing follows the distance decay law. The smaller the time constraint is,the slower the attenuation speed is,and the weaker the dominance of the distance decay theory is. In terms of self-driving tour on 1 day or 2 days,74% of tourists travel within a radius of 50 km. In terms of self-driving tour on 3 days or 7 days,73% of tourists travel within a radius of 800 km. In terms of self-driving tour on 8 days and above,50% of tourists travel within a radius of 1100 km. 2) The destination selection of self-driving tour has the characteristics of short-distance preference reversal and long-distance city orientation. In the short distance,self-driving tourists prefer to go to low-level scenic spots. In the long distance,self-driving tourists prefer to go to the tourism cities with high-level scenic spots which are mainly distributed in the central and western regions. 3) Self-drive travel direction and destination selection show the seasonal characteristics,self-driving tourists prefer to go to the grasslands of the north of China to "avoid summer heat",and go to the south of China to "avoid winter cold". In spring and autumn,they prefer to go to the southeastern and northwestern regions,which is related to their geographical location. The results can provide reference for travel forecast and camp construction.
[1] 张晓燕,窦蕾,马勋. 我国自驾车旅游市场细分研究——以华北地区为例[J]. 北京第二外国语学院学报,2006,139(9):74-79,8.
[2] 汪德根,陈田,刘昌雪. 基于出游半径的自驾车旅游市场特征差异分析——以苏州市为例[J]. 旅游学刊,2010,25(1):42-47
[3] Xinjia Huang,Yong Zhou.Aspects of lifestyle change in China:Motivations for self-drive travel-A Chinese domestic market perspective[J]. Journal of Travel & Tourism Marketing,2016,33(6):912-928.
[4] 史春云,孙勇,张宏磊,等. 基于结构方程模型的自驾游客满意度研究[J]. 地理研究,2014,33(4):751-761.
[5] 吴必虎,唐俊雅,黄安民,等. 中国城市居民旅游目的地选择行为研究[J]. 地理学报,1997,52(2):3-9.
[6] 张甜歌,吴晋峰,石晓腾,等. “轮毂”模型:城市自驾旅游者的出游空间结构——以北京、西安、武汉为例[J]. 地理研究,2020,39(8):1822-1835.
[7] 罗秋菊,梁思贤. 基于数字足迹的自驾车旅游客流时空特征研究——以云南省为例[J]. 旅游学刊,2016,31(12):41-50.
[8] Hsin-Yu S.Network characteristics of drive tourism destinations:An application of network analysis in tourism[J]. Tourism Management,2006,27(5):1029-1039.
[9] 鲁宜苓,孙根年. 公路何以成为旅游资源[J]. 公路,2017,62(3):193-198.
[10] 刘瑜,汪珂丽,邢潇月,等. 地理分析中的空间效应[J]. 地理学报,2023,78(3):517-531.
[11] Šveda M,Sládeková M M.Estimating distance decay of intra-urban trips using mobile phone data:The case of Bratislava,Slovakia[J]. Journal of Transport Geography,2023,107:103552.
[12] 吴晋峰,石晓腾,吴宝清. 基于城市居民累积出游经历的“吴曲线”变化研究[J]. 干旱区资源与环境,2022,36(12):172-183.
[13] 张捷,都金康,周寅康,等. 自然观光旅游地客源市场的空间结构研究——以九寨沟及比较风景区为例[J]. 地理学报,1999,54(4):71-78.
[14] 钟士恩,任黎秀,欧阳怀龙. 世界遗产地庐山“圈层飞地”型旅游客源市场空间结构研究[J]. 地理与地理信息科学,2007,23(4):76-80.
[15] 王海江,苏景轩,苗长虹,等. 中国中心城市旅游出行的空间分布规律与结构图谱研究[J]. 地理科学,2021,41(11):1907-1916.
[16] 严钰帆. 长三角城市间旅游关注度的空间衰减[D]. 上海:华东师范大学,2021.
[17] 王坤晓,吴晋峰,石晓腾,等. 闲暇时间对旅游者目的地和交通选择行为的影响[J]. 地域研究与开发,2023,42(2):86-92.
[18] Lin C,Morais D B.The spatial clustering effect of destination distribution on cognitive distance estimates and its impact on tourists' destination choices[J]. Journal of Travel & Tourism Marketing,2008,25(3-4):382-397.
[19] 闾平贵,汪德根,魏向东. “时空压缩”与客源市场空间结构演变——以江苏国际旅游客源市场为例[J]. 经济地理,2009,29(3):504-509.
[20] 孙根年,张毓,薛佳. 资源—区位—贸易三大因素对日本游客入境旅游目的地选择的影响[J]. 地理研究,2011,30(6):1032-1043.
[21] 陈健昌,保继刚. 旅游者的行为研究及其实践意义[J]. 地理研究,1988(3):44-51.
[22] 白倩文,吴晋峰,罗维,等. 旅游目的地选择行为的收入群体差异——以北京、武汉、西安城镇居民为例[J]. 人文地理,2020,35(5):150-160.
[23] 刘清春,王铮,许世远. 中国城市旅游气候舒适性分析[J]. 资源科学,2007,29(1):133-141.
[24] 马丽君,孙根年,王洁洁. 中国东部沿海沿边城市旅游气候舒适度评价[J]. 地理科学进展,2009,28(5):713-722.
[25] 孙根年,舒镜镜. 加拿大入境美国旅游流的地域对接分析[J]. 世界地理研究,2010,19(4):154-162.
[26] 吴普,周志斌,慕建利. 避暑旅游指数概念模型及评价指标体系构建[J]. 人文地理,2014,29(3):128-134.
[27] 吴晋峰,包浩生. 旅游流距离衰减现象演绎研究[J]. 人文地理,2005,20(2):62-65.
[28] 董宏成,赵学华,赵成,等. 基于HDBACAN聚类的自适应过采样技术[J]. 计算机工程与设计,2020,41(5):1295-1300.
[29] 韩田宇. 基于HDBSCAN的船舶轨迹聚类方法[J]. 科学技术创新,2022(19):164-167.
[30] 王殿海,景超,姚荣涵. 居民出行分布中的电子云现象[J]. 物理学报,2007,56(7):3642-3648.
[31] 杨国栋. 中国东部地区物候季节划分的初步探索[J]. 河南师大学报:自然科学版,1983(1):69-76.
[32] 宛敏渭. 论北京物候季节的划分与农时预测[J]. 农业气象,1980(4):1-9.
[33] 张明庆,杜育林,任阳. 北京什刹海地区的物候季节[J]. 首都师范大学学报:自然科学版,2007(3):78-80,99.
[34] 汪丽,曹小曙,胡玲玲. 景点可达性对不同出游时间游客流动的影响研究——以西安市为例[J]. 人文地理,2021,36(3):157-166.