Evolution of Ecological Security Pattern of Yangtze River Economic Belt and Its Multi-scenario Simulation

Expand
  • 1. School of Environmental Studies,China University of Geosciences,Wuhan 430074,Hubei,China;
    2. Kanazawa University,Kanazawa 9201192,Ishikawa,Japan;
    3. School of Physical Education,China University of Geosciences,Wuhan 430074,Hubei,China;
    4. Hubei Institute of Land Surveying and Mapping,Wuhan 430010,Hubei,China;
    5. Shishou Municipal Bureau of Natural Resources and Planning,Shishou 434400,Hubei,China;
    6. Land Consolidation and Rehabilitation Center,Ministry of Natural Resources of the People's Republic of China,Beijing 100035,China

Received date: 2023-06-21

  Revised date: 2023-11-10

  Online published: 2024-03-29

Abstract

This paper conducts a multi-scenario simulation of the ecological security pattern based on an analysis and simulation of the ecological elements of the Yangtze River Economic Belt in 2040 using the LUCC model and the MSPA-MCR method. The findings reveal that: 1) In 2020, the study area's current ecological elements are dominated by forest land (1052086 km2) and arable land (667456 km2), and the structural change of these elements is manifested by the continual decrease of grassland,water,and arable land, and the small increase of forest land. The change areas are mainly located in the upper reaches of Sichuan-Tibet area,Hengduan Mountains area, Qinba Mountains area,the middle and lower reaches of Wuling Mountains area,Huangshan area and the lower reaches of Yangtze River plain. 2) The area and spatial characteristics of ecological elements in 2040 are significantly different under different scenarios. The total area of ecological elements increases only under the production priority scenario and decreases under the other four scenarios. The expansion of ecological elements primarily takes place in the transition zone of different elements,while the shrinkage of ecological elements primarily takes place in the interface zone of construction land and ecological land. 3) 30 significant ecological source regions which have a combined area of 352573 km2 and an average connectedness of 3.77 connect 69 ecological corridors,with an average length of around 260 km. Significant biological source regions mainly consist of forestland and grassland,which shows the big-block cluster distribution characteristic in the upper reaches of Yangtze River Economic Belt and the small-block cluster distribution characteristic in the middle and lower reaches of Yangtze River Economic Belt. 4) The ecological priority scenario and the integrated optimization scenario will result in a more complex ecological network,better connectivity of ecological sources and a healthier and more stable ecosystem pattern in the study area.

Cite this article

LIU Xiaoqiong, HE Pengfei, HAN Jicai, XIAO Hao, WANG Yingnan . Evolution of Ecological Security Pattern of Yangtze River Economic Belt and Its Multi-scenario Simulation[J]. Economic geography, 2023 , 43(12) : 192 -203 . DOI: 10.15957/j.cnki.jjdl.2023.12.019

References

[1] Aburas M,Ho Y,Ramli M,et al.Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an Analytical Hierarchy Process and Frequency Ratio[J]. International Journal of Applied Earth Observation and Geoinformation,2017,59:65-78.
[2] 王清扬,雷绪斌,周婧婧,等. 县域土地利用多功能的演变及其影响因素——以湖南省为例[J]. 经济地理,2022,42(9):186-192.
[3] Carlos I,María F,Frank W,et al.Urbanisation process generates more independently-acting stressors and ecosystem functioning impairment in tropical Andean streams[J]. Journal of Environmental Management,2022,https://doi.org/10.1016/j.jenvman.2021.114211.
[4] 林彤,杨木壮,吴大放,等. 基于InVEST - PLUS模型的碳储量空间关联性及预测——以广东省为例[J]. 中国环境科学,2022,42(10):4827-4839.
[5] Ykab C.Monitoring the spatial spillover effects of urbanization on water,built-up land and ecological footprints in sub-Saharan Africa[J]. Journal of Environmental Management,2021,https://doi.org/10.1016/j.jenvman.2021.113690.
[6] Jin G,Peng J,Zhang L,et al.Understanding land for high-quality development[J]. Journal of Geographical Sciences,2023,33(2):217-221.
[7] 潘方杰,万庆,曾菊新,等. 城镇化进程中湖北省“生产—生活—生态”空间冲突演化及其影响因素[J]. 经济地理,2023,43(2):80-92.
[8] 张杨,杨洋,江平,等. 山水林田湖草生命共同体的科学认知、路径及制度体系保障[J]. 自然资源学报,2022,37(11):3005-3018.
[9] 习近平. 关于《中共中央关于全面深化改革若干重大问题的决定》的说明[N]. 人民日报,2013 - 11 - 16.
[10] 成金华,尤喆. “山水林田湖草是生命共同体”原则的科学内涵与实践路径[J]. 中国人口·资源与环境,2019,29(2):1-6.
[11] 吴钢,赵萌,王辰星. 山水林田湖草生态保护修复的理论支撑体系研究[J]. 生态学报,2019,39(23):8685-8691.
[12] 罗明,于恩逸,周妍,等. 山水林田湖草生态保护修复试点工程布局及技术策略[J]. 生态学报,2019,39(23):8692-8701.
[13] 王夏晖,何军,饶胜,等. 山水林田湖草生态保护修复思路与实践[J]. 环境保护,2018,46(Z1):17-20.
[14] 邵雅琪,王春丽,肖玲,等. 妫水河流域山水林田湖草空间格局与生态过程分析[J]. 生态学报,2019,39(21):7893-7903.
[15] 王晓玉,冯喆,吴克宁,等. 基于生态安全格局的山水林田湖草生态保护与修复[J]. 生态学报,2019,39(23):8725-8732.
[16] 冯彦,郑洁,祝凌云,等. 基于PSR模型的湖北省县域森林生态安全评价及时空演变[J]. 经济地理,2017,37(2):171-178.
[17] 吴大放,吴钊骏,李升发,等. 粤北山区耕地非粮化演变特征及其影响因素[J]. 经济地理,2023,43(8):144-153.
[18] 赵同谦,欧阳志云,贾良清,等. 中国草地生态系统服务功能间接价值评价[J]. 生态学报,2004,24(6):1101-1110.
[19] 段学花,王兆印,余国安. 以底栖动物为指示物种对长江流域水生态进行评价[J]. 长江流域资源与环境,2009,18(3):241-247.
[20] 刘艳艳,吴大放,王朝晖. 湿地生态安全评价研究进展[J]. 地理与地理信息科学,2011,27(1):69-75.
[21] Li L,Huang X,Wu D,et al.Construction of ecological security pattern adapting to future land use change in Pearl River Delta,China[J]. Applied Geography,2023,https://doi.org/10.1016/j.apgeog.2023.102946.
[22] Liu X,Wang X,Chen K,et al.Simulation and prediction of multi-scenario evolution of ecological space based on FLUS model:A case study of the Yangtze River Economic Belt,China[J]. Journal of Geographical Sciences,2023,33(2):373-391.
[23] 王旭,马伯文,李丹,等. 基于FLUS模型的湖北省生态空间多情景模拟预测[J]. 自然资源学报,2020,35(1):230-242.
[24] 苏迎庆,刘庚,赵景波,等. 基于FLUS模型的汾河流域生态空间多情景模拟预测[J]. 干旱区研究,2021,38(4):1152-1161.
[25] 李久枫,刘艳艳,吴大放,等. 近30年珠海市耕地生态安全评价及未来预测[J]. 广东农业科学,2017,44(1):156-166.
[26] 周浩,雷国平,杨雪昕,等. RCPs气候情景下三江平原典型流域耕地动态模拟[J]. 农业机械学报,2017,48(10):121-133.
[27] 李达净,张时煌,刘兵,等. “山水林田湖草—人”生命共同体的内涵、问题与创新[J]. 中国农业资源与区划,2018,39(11):1-5,93.
[28] Liang Y,Wu D,Wu Z,et al. Construction of ecological corridors in karst areas based on ecological sensitivity and ecological service value[J]. Land,2023,https://doi.org/10.3390/land12061177.
[29] 刘小平,黎夏,彭晓鹃. “生态位”元胞自动机在土地可持续规划模型中的应用[J]. 生态学报,2007,27(6):2391-2402.
[30] Liu X,Liang X,Li X,et al.A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape & Urban Planning,2017,168:94-116.
[31] 王少剑,王洋,赵亚博. 1990年来广东区域发展的空间溢出效应及驱动因素[J]. 地理学报,2015,70(6):965-979.
[32] 刘晓娟,黎夏,梁迅,等. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理,2019,39(3):397-409.
[33] 邓华,邵景安,王金亮,等. 多因素耦合下三峡库区土地利用未来情景模拟[J]. 地理学报,2016,71(11):1979-1997.
[34] 赵玉攀,于欢,雷光斌,等 .基于生态风险评估的湄公河流域生态网络识别[J]. 遥感技术与应用,2023,38(1):116-128.
[35] 姚材仪,何艳梅,程建兄,等. 基于MCR模型和重力模型的岷江流域生态安全格局评价与优化建议研究[J]. 生态学报,2023,43(17):1-14.
[36] 张平江,党国锋. 基于MCR模型与蚁群算法的洮河流域生态安全格局构建[J]. 生态环境学报,2023,32(3):481-491.
[37] 李权荃,金晓斌,张晓琳,等. 基于景观生态学原理的生态网络构建方法比较与评价[J]. 生态学报,2023,43(4):1461-1473.
[38] Ye Y,Su Y,Zhang H,et al.Construction of an ecological resistance surface model and its application in urban expansion simulation[J].Journal of Geographical Sciences,2015,25(2):211-224.
[39] 蒙吉军,王雅,王晓东,等. 基于最小累积阻力模型的贵阳市景观生态安全格局构建[J]. 长江流域资源与环境,2016,25(7):1052-1061.
[40] Gao M,Hu Y,Bai Y.Construction of ecological security pattern in national land space from the perspective of the community of life in mountain,water,forest,field,lake and grass:A case study in Guangxi Hechi,China[J]. Ecological Indicators,2022,https://doi.org/10.1016/j.ecolind.2022.108867.
Outlines

/