Spatiotemporal Evolution of Wine Production Clusters and Its Driving Mechanism in the East of Helan Mountains

Expand
  • 1. School of Advanced Interdisciplinary Studies,Ningxia University,Zhongwei 755000,Ningxia,China;
    2. College of Tourism and Geographical Science,Leshan Normal University,Leishan 614004,Sichuan,China;
    3. Faculty of Geography,Yunnan Normal University,Kunming 650500,Yunnan,China;
    4. School of Tourism and Cultural Management,University of Angers,Angers 49022,Pays de la Loire,France;
    5. Institute of Subtropical Agriculture,Chinese Academy of Sciences,Changsha 410125,Hunan,China

Received date: 2023-02-06

  Revised date: 2023-06-16

  Online published: 2024-03-29

Abstract

Taking the wine production clusters in the east of Helan Mountains (the largest wine production region in China) as the research area,this study analyzes the spatio-temporal evolution of wine production clusters in 1984-2021,identifies its main driving factors and explains its driving mechanism. The results show that: 1) The development of the wine industry in the east of Helan Mountains can be divided into four phases from 1984 to 2021: germination and stagnation phase in 1984-1995 (I), slow development phase in 1995-2005 (Ⅱ), rapid development phase in 2005-2011(Ⅲ),and rapid development phase in 2011-2021 (Ⅳ). 2) In terms of space,during stage I to stage Ⅳ,it shows the spatial evolution of single-center - multi-center - the mature stage of multi-center - multi-center network, and the gravity centers shifted to the southeast as a whole. 3) Precipitation (50.7%),organic matter (13.6%),air temperature (10.4%),powder (7.9%),total potassium (6.1%), gravel content (4.8%) and sand (2.7) are the main driving factors of the spatio-temporal variation of the wine production clusters in the east of Helan Mountains,and p value is less than or equal to 0.05. 4) It is found that it is mainly driven by air temperature and total potassium at the phase of I. It is mainly driven by powder,sand and total potassium at the phase of Ⅱ,precipitation,air temperature,powder and total potassium at the phase of Ⅲ,and dominated by precipitation,organic matter,sand,gravel content and total potassium at the phase of Ⅳ. 5) In terms of mechanism,dominant and recessive driving forces work together to drive the temporal and spatial changes of wine production clusters in the east of Helan Mountains.

Cite this article

LIU Zhilin, WANG Lei, DING Yinping, JIAO Yuanmei, WU Xinyi, XU Qiue . Spatiotemporal Evolution of Wine Production Clusters and Its Driving Mechanism in the East of Helan Mountains[J]. Economic geography, 2023 , 43(8) : 165 -176 . DOI: 10.15957/j.cnki.jjdl.2023.08.017

References

[1] Bitsch L,Li S,Hanf J H.Vertical coordination in the Chinese grape market[J].Journal of Agribusiness in Developing and Emerging Economies,2021,11(4):396-410.
[2] 王磊,刘家明,李涛,等. 葡萄酒旅游研究的国际进展及启示[J]. 旅游学刊,2018,33(10):117-126.
[3] 任京,崔彦志,郭瑞东,等. 中国葡萄酒庄及其发展模式探讨[J]. 中外葡萄与葡萄酒,2007(1):64-65.
[4] Willwerth J J,Reynolds A G.Spatial variability in Ontario Riesling vineyards.Ⅱ. Berry composition[J].Canadian Journal of Plant Science,2020,100(5):504-527.
[5] Witze A.The grapes of rock[J]. Nature,2005,438:1073-1074.
[6] Lund S T,Bohlmann J.The molecular basis for wine grape quality:A volatile subject[J]. Science,2006,311(5762):804-805.
[7] van Leeuwen C,Friant P,Choné X,et al.Influence of climate,soil,and cultivar on terroir[J].American Journal of Enology and Viticulture,2004,55(3):207-217.
[8] Zimmermann S,Sentenac H.Plant ion channels:From molecular structures to physiological functions[J].Current Opinion in Plant Biology,1999,2(6):477-482.
[9] 刘佳,李兆君,龙健,等. 京津冀地区葡萄园土壤肥力水平分析及施肥建议[J]. 中国土壤与肥料,2022(8):14-22.
[10] 李玉梅,娄玉穗,王小龙,等. “夏黑”葡萄高品质果园植株叶片和土壤营养诊断研究[J]. 园艺学报,2023,50(4):864-874.
[11] Li J,Wang L,Javed H U,et al.Nutrient solution with high nitrogen content,a suitable facilitator of growth and berry quality in hydroponic ‘Shine Muscat’ grapevine (Vitis vinifera × V. labrusca)[J]. Scientia Horticulturae,2023,310(2):1-11.
[12] 刘亚柏,黄洁雪,陈海波. 基于养分平衡减钾对葡萄果实品质和土壤养分的影响[J]. 江苏农业科学,2022,50(21):151-154.
[13] Cohen S D,Tarara J M,Kennedy J A.Assessing the impact of temperature on grape phenolic metabolism[J].Analytica Chimica Acta,2008,621(1):57-67.
[14] Moriondo M,Jones G V,Bois B,et al.Projected shifts of wine regions in response to climate change[J].Climatic Change,2013,119(3-4):825-839.
[15] Lopes C M,Santos T P,Monteiro A,et al.Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard[J].Scientia Horticulturae,2011,129(4):603-612.
[16] 王蕾,李华,王华. 中国葡萄气候区划Ⅱ:酿酒葡萄品种区域化[J]. 科学通报,2017,62(14):1539-1554.
[17] Cyr D,Kusy M,Shaw A B.Climate change and the potential use of weather derivatives to hedge vineyard harvest rainfall risk in the Niagara region[J].Journal of Wine Research,2010,21(2-3):207-227.
[18] Koufos G C,Mavromatis T,Koundouras S,et al.Response of viticulture-related climatic indices and zoning to historical and future climate conditions in Greece[J].International Journal of Climatology,2018,38(4):2097-2111.
[19] 张山清,普宗朝,吉春容,等. 气候变化对新疆酿酒葡萄种植气候区划的影响[J]. 中国农业资源与区划,2016,37(9):125-134.
[20] 冯蕊,张晓煜,李芳红,等. 贺兰山东麓酿酒葡萄品质成分对气象因子的响应特征[J]. 西北植物学报,2022,42(8):1363-1372.
[21] Bindon K,Myburgh P,Oberholster A,et al.Response of grape and wine phenolic composition in Vitis vinifera L. cv. merlot to variation in grapevine water status[J].South African Journal of Enology and Viticulture,2016,32(1):71-88.
[22] Petruzzellis F,Natale S,Bariviera L,et al.High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in classical Karst[J].Agricultural Water Management,2022,260(2):1-15.
[23] 李华,王华. 中国葡萄酒[M]. 杨凌:西北农林科技大学出版社,2010.
[24] 张光伦. 生态因子对果实品质的影响[J]. 果树科学,1994(2):120-124.
[25] 李善同,黄怡,刘云中. 中国产业空间重心移动特征与启示[J]. 经济地理,2022,42(9):1-10.
[26] 张思麒,刘导波. 技术进步视角下中国产业结构高级化格局及影响因素[J]. 经济地理,2022,42(5):104-113.
[27] Santos M,Fonseca A,Fraga H,et al.Bioclimatic conditions of the Portuguese wine denominations of origin under changing climates[J].International Journal of Climatology,2019,40(2):927-941.
[28] Fraga H,Malheiro A C,Moutinho-Pereira J,et al.Very high resolution bioclimatic zoning of Portuguese wine regions:present and future scenarios[J]. Regional Environmental Change,2014,14(1):295-306.
[29] Liu Z,Ding Y,Jiao Y.Impact of changes in precipitation pattern on food supply in a monsoon interlacing area and its mechanism:A case study of Yunnan Province[J].Journal of Geographical Sciences,2021,31(10):1490-1506.
[30] 刘志林,丁银平,角媛梅,等. 滇中城市群不透水表面时空变化与反常气候现象研究[J]. 地理学报,2022,77(7):1775-1793.
[31] 刘志林,丁银平,角媛梅,等. 中国西南少数民族聚居区聚落分布的空间格局特征与主控因子分析——以哈尼梯田区为例[J]. 地理科学进展,2021,40(2):257-271.
[32] 谢聪,王强. 中国新能源产业技术创新能力时空格局演变及影响因素分析[J]. 地理研究,2022,41(1):130-148.
[33] 曹杰,林正雨,陈春燕,等. 基于地理探测器的四川省茶产业时空格局变化及驱动因素研究[J]. 中国生态农业学报(中英文),2023,31(4):619-631.
[34] 李涛,薛领,李国平. 产业集聚空间格局演变及其对经济高质量发展的影响——基于中国278个城市数据的实证分析[J]. 地理研究,2022,41(4):1092-1106.
Outlines

/