The application of digital technology has become the key factor to promote economic growth,and its industrial spatial agglomeration has become the frontier proposition of "new economic geography". Based on the data of micro enterprises from 2016 to 2021,this paper calculates the agglomeration degree of digital technology application industry and its subsectors by Scholl agglomeration index,and uses spatial analysis method to study the spatial agglomeration evolution characteristics of digital technology application industry in Zhejiang Province. The main conclusions are as follows: 1) It overall shows the "core region-peripheral corridor" spatial pattern along Hangzhou Bay,and the evolution trend is from the "single core" to the "multi-core". The cluster industrial development axis of "Hangzhou-Yiwu-Jinhua-Quzhou" and "Taizhou-Wenzhou" has taken on the shape. 2) The number of new enterprises in each city and sub-industry did not show a trend of specialization,but the Matthew effect was significant and there was a phenomenon of spatial reorganization. As a dominant industry,the information technology service industry and the software development industry show an "olive-shaped" distribution. 3) The agglomeration evolution trend of segmented industries is related to industry attributes. Information technology service industry,software development industry and Internet-related service industry tend to cluster and are highly coupled in spatial evolution. The telecommunication,broadcasting and satellite transmission services are scattered and need to rely on the core of the region to achieve digital technology transformation. Other digital technology application industries,as a high-end industry affiliated,do not have obvious agglomeration and dispersion characteristics. Finally,based on the multi-cluster industrial spatial structure of "one bay leading and three axes driving",it proposes the future development proposal of " planning docking +specialization + institutional protection ".
SHEN Lizhen, QIANG Jingqi, WANG Xia, XI Guangliang, CHEN Peipei
. Spatial Agglomeration Evolution Characteristics of Digital Technology Application Industry in Zhejiang Province:Based on Micro-enterprise Data[J]. Economic geography, 2023
, 43(7)
: 151
-160
.
DOI: 10.15957/j.cnki.jjdl.2023.07.015
[1] 数字经济及其核心产业统计分类(2021)[R]. 中华人民共和国国务院公报,2021(20):16-30.
[2] Goldfarb A,Tucker C.Digital economics[J]. Journal of Economic Literature,2019,57(1):3-43.
[3] 中国信息通信研究院. 中国数字经济发展白皮书(2022)[R]. 2022.
[4] Organisation for Economic Co-operation and Development. Measuring the Digital Economy:A New Perspective[M]. OECD Publishing,2014.
[5] 张英浩,汪明峰,崔璐明,等. 数字经济水平对中国市域绿色全要素生产率的影响[J]. 经济地理,2022,42(9):33-42.
[6] 许宪春,张美慧. 中国数字经济规模测算研究——基于国际比较的视角[J]. 中国工业经济,2020(5):23-41.
[7] 关会娟,许宪春,张美慧,等. 中国数字经济产业统计分类问题研究[J]. 统计研究,2020,37(12):3-16.
[8] 张帅,吴珍玮,陆朝阳,等. 中国省域数字经济与实体经济融合的演变特征及驱动因素[J]. 经济地理,2022,42(7):22-32.
[9] 彭文斌,韩东初,尹勇,等. 京津冀地区数字经济的空间效应研究[J]. 经济地理,2022,42(5):136-143,232.
[10] 王胜鹏,滕堂伟,夏启繁,等. 中国数字经济发展水平时空特征及其创新驱动机制[J]. 经济地理,2022,42(7):33-43.
[11] 李海舰,李燕. 对经济新形态的认识:微观经济的视角[J]. 中国工业经济,2020(12):159-177.
[12] Basu S,Fernald J.Information and communications technology as a general-purpose technology:Evidence from US industry data[J]. German Economic Review,2007,8(2):146-173.
[13] 徐映梅,张雯婷. 中国数字经济产业关联网络结构分析[J]. 统计与信息论坛,2021,36(8):30-42.
[14] 阿弗里德·马歇尔. 经济学原理[M]. 北京:华夏出版社,2013.
[15] Weber A.Theory of the Location of Industries[M]. Chicago:University of Chicago Press,1962.
[16] Hoover E M.Location Theory and the Shoe and Leather Industries[M]. Cambridge:Harvard University Press,1937.
[17] Porter M E.The competitive advonioge of notions[J]. Harvard Business Review,1990,73:91.
[18] Krugman P. Development,Geography,andEconomic Theory[M]. Cambridge:MIT Press,1997.
[19] 杨路明,施礼. “一带一路”数字经济产业聚集发展研究[J]. 中国流通经济,2021,35(3):54-67.
[20] 孙勇,樊杰,刘汉初,等. 长三角地区数字技术创新时空格局及其影响因素[J]. 经济地理,2022,42(2):124-133.
[21] 毛丰付,高雨晨,周灿. 长江经济带数字产业空间格局演化及驱动因素[J]. 地理研究,2022,41(6):1593-1609.
[22] 徐维祥,周建平,刘程军.数字经济发展对城市碳排放影响的空间效应[J].地理研究,2022,41(1):111-129.
[23] 卢明华,李丽. 北京电子信息产业及其价值链空间分布特征研究[J]. 地理研究,2012,31(10):1861-1871.
[24] 袁丰,魏也华,陈雯,等. 苏州市区信息通讯企业空间集聚与新企业选址[J]. 地理学报,2010,65(2):153-163.
[25] 林娟,张欣炜,汪明峰. 上海大都市区物联网产业集聚与空间演化[J]. 人文地理,2017,32(3):131-137,145.
[26] 段吕晗,杜德斌,黄筱彧. 上海互联网新创企业的时空演化及影响因素[J]. 地理科学进展,2019,38(3):383-394.
[27] 王丹,方斌,陈正富. 基于社区尺度的互联网企业空间格局与演化——以扬州市区为例[J]. 经济地理,2018,38(6):133-141.
[28] 李汉青,袁文,马明清,等. 珠三角制造业集聚特征及基于增量的演变分析[J]. 地理科学进展,2018,37(9):1291-1302.
[29] Briant A,Combes P P,Lafourcade M.Dots to boxes:Do the size and shape of spatial units jeopardize economic geography estimations?[J]. Journal of Urban Economics,2010,67(3):287-302.
[30] Ripley B D.The second-order analysis of stationary point processes[J]. Journal of Applied Probability,1976,13(2):255-266.
[31] 刘春霞,朱青,李月臣. 基于距离的北京制造业空间集聚[J]. 地理学报,2006(12):1247-1258.
[32] Duranton G,Overman H G.Testing for localization using micro-geographic data[J]. The Review of Economic Studies,2005,72(4):1077-1106.
[33] Scholl T,Brenner T.Detecting spatial clustering using a firm-level cluster index[J]. Regional Studies,2016,50(6):1054-1068.
[34] 崔喆,沈丽珍,刘子慎. 南京市新街口CBD服务业空间集聚及演变特征——基于微观企业数据[J]. 地理科学进展,2020,39(11):1832-1844.
[35] 袁海红,张华,曾洪勇. 产业集聚的测度及其动态变化——基于北京企业微观数据的研究[J]. 中国工业经济,2014(9):38-50.
[36] 刘威. 中美贸易摩擦中的高技术限制之“谜”[J]. 东北亚论坛,2019,28(2):82-96,128.
[37] 周麟,沈体雁. 大城市内部服务业区位研究进展[J]. 地理科学进展,2016,35(4):409-419.
[38] 马璇,张振广. 基于人口流动的长三角区域空间演化特征及态势研究[J]. 城市规划学刊,2020(5):47-54.
[39] 饶叶玲,罗震东. 数字化转型与深度扩散:基于B2B电商企业的长三角产业空间演化研究[J]. 城市规划学刊,2021,263(3):82-89.