Based on the night light data of 730 units at the county level in the Yellow River Basin from 2013 to 2021,the paper explores the spatiotemporal distribution characteristics of economic development in the Yellow River Basin by using the methods of gravity center,standard deviation ellipse and spatial autocorrelation analysis,and analyzes the relevant influencing factors with the multivariable linear regression model. The research finds that: On the whole,the economic development in the Yellow River Basin shows uneven distribution which is higher in the east than the west,and core-periphery pattern. The gravity center of economic development in the Yellow River Basin is generally stable with a small offset,which indicates that there are differences in the economic volume in the area,but the differences are gradually narrowing. At the same time,the standard deviation ellipse presents a relatively stable "northeast-southwest" distribution pattern. From the perspective of spatial correlation,there is an obvious positive correlation in the economic development of the Yellow River Basin. The degree of spatial correlation decreases first and then increases. It has strong spatial heterogeneity and regional aggregation characteristics,and the aggregation trend is caused by high aggregation areas. Among the positive factors,industrial structure is the most important factor affecting the economic development,financial development is the secondary,population size and education level are important,government intervention and terrain conditions are restrictive factors.
CHEN Hongzhang, ZENG Bing, GUO Hong
. Spatial-temporal Pattern Evolution and Driving Factors of County Economy in the Yellow River Basin:Based on the Analysis of Night Light Data[J]. Economic geography, 2022
, 42(11)
: 37
-44
.
DOI: 10.15957/j.cnki.jjdl.2022.11.005
[1] 李冬花,张晓瑶,陆林,等. 黄河流域高级别旅游景区空间分布特征及影响因素[J]. 经济地理,2020,40(5):70-80.
[2] 郭付友,佟连军,仇方道,等. 黄河流域生态经济走廊绿色发展时空分异特征与影响因素识别[J]. 地理学报,2021,76(3):726-739.
[3] 邓祥征,杨开忠,单菁菁,等. 黄河流域城市群与产业转型发展[J]. 自然资源学报,2021,36(2):273-289.
[4] 赵敏,夏同水,马宗国. 黄河流域生态保护和农业产业高质量发展评价研究[J]. 长江流域资源与环境,2022,31(9):2096-2107.
[5] 薛明月,王成新,赵金丽,等. 黄河流域旅游经济空间分异格局及影响因素[J]. 经济地理,2020,40(4):19-27.
[6] 曾冰,谢琦. 基于夜间灯光数据的黄河流域经济发展空间特征与影响机制分析[J]. 中国沙漠,2022,42(3):41-50.
[7] 徐康宁,陈丰龙,刘修岩. 中国经济增长的真实性:基于全球夜间灯光数据的检验[J]. 经济研究,2015,50(9):17-29,57.
[8] Henderson J V,Storeygard A,Weil D N.Measuring economic growth from outer space[J]. National Bureau of Economic Research,2012,102(2):994-1028.
[9] Donaldson D,Storeygard A.The view from above:Applications of satellite data in economics[J]. Journal of Economic Perspectives,2016,30(4):171-198.
[10] 刘华军,杜广杰. 中国经济发展的地区差距与随机收敛检验——基于2000~2013年DMSP/OLS夜间灯光数据[J]. 数量经济技术经济研究,2017,34(10):43-59.
[11] 王利伟,冯长春. 转型期京津冀城市群空间扩展格局及其动力机制——基于夜间灯光数据方法[J]. 地理学报,2016,71(12):2155-2169.
[12] Fromm G,Denison E F.The sources of economic growth in the United States and the alternatives before us[J]. Journal of the American Statistical Association,1963,23(3):352.
[13] Anselin L.Interactive techniques and exploratory spatial data analysis[C]//Longley P A,Goodchild M F,Maguire D J,et al .Geographical Information Systems,Principles,Technical Issues,Management Issues and Applications John Wiley & Sons,Inc,1999:253-266.
[14] 蒲英霞,马荣华,葛莹,等. 基于空间马尔可夫链的江苏区域趋同时空演变[J]. 地理学报,2005,60(5) :817-826.
[15] Anselin L,Rey S,Montouri B.Regional income convergence:A spatial econometric perspective[J]. Regional Studies,1991,33(2):112-131.
[16] 王长松,段蕴歆,张然. 历史时期黄河流域城市空间格局演变与影响因素[J]. 自然资源学报,2021,36(1):69-86.
[17] 罗庆,李小建. 基于VIIRS夜间灯光的中国城市中心的分异特征及其影响因素[J]. 地理研究,2019,38(1):155-166.
[18] 曾冰. 基于NPP/VIIRS夜间灯光数据的湘鄂赣省际交界区县域经济空间格局及影响因素[J]. 地理科学,2020,40(6):900-907.
[19] 李敏纳,蔡舒,覃成林. 黄河流域经济空间分异态势分析[J]. 经济地理,2011,31(3):379-383,419.
[20] 李翔,朱江,尹向东. 基于夜间灯光数据的中国经济发展时空格局特征[J]. 地球信息科学学报,2019,21(3):417-426.
[21] 杨万平,张振亚. 黄河流域与长江经济带生态全要素生产率对比研究[J]. 管理学刊,2020,33(5):26-37.
[22] 王晓巍,温国明,李二玲. 黄河与长江两经济带形成的分形比较研究[J]. 中国软科学,2008(12):77-85.
[23] 潘竟虎,胡艳兴. 基于夜间灯光数据的中国多维贫困空间识别[J]. 经济地理,2016,36(11):124-131.